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Improved overall survival in an anti-PD-L1
treated cohort of newly diagnosed
glioblastoma patients is associated with
distinct immune, mutation, and gut
microbiome features: a single arm
prospective phase I/II trial

Shiao-Pei Weathers 1 , Xiqi Li2,7, Haifeng Zhu2,7, Ashish V. Damania2,
Mark Knafl 2, Brian McKinley 2, Heather Lin3, Rebecca A. Harrison1,
Nazanin K. Majd1, Barbara J. O’Brien1, Marta Penas-Prado1, Monica Loghin1,
Carlos Kamiya-Matsuoka 1, W. K. Alfred Yung 1, Luisa M. Solis Soto 4,
Dipen M. Maru 4, Ignacio Wistuba4, Edwin R. Parra Cuentas4,
Sharia Hernandez 4, Andrew Futreal 2, Jennifer A. Wargo 5, Katja Schulze6,
Walter C. Darbonne 6, Nadim J. Ajami 2, Scott E. Woodman 2,8 &
John F. de Groot 1,8

This phase I/II trial aims to evaluate the efficacy of concurrent atezolizumabwith
radiation therapy and temozolomide (TMZ) followed by adjuvant atezolizumab
and TMZ in newly diagnosed glioblastoma (GBM) patients and to identify pre-
treatment correlates with outcome (N =60). Trial number: NCT03174197. The
primary outcome was overall survival (OS) whereas secondary outcomes were
retrospective global–omics analyses to identify pre-treatment immune and
genetic tumor features that correlated with survival. Concurrent use of atezoli-
zumabwith radiation and TMZdemonstratedOS in line with published trials for
newly diagnosed GBM. Tumor genomic (WES and/or targeted NGS panel),
transcriptomic (RNAseq) and tissue microenvironment imaging, as well as fecal
metagenomic sequencing were conducted. Gene set enrichment analysis of
tumors identified multiple immune-based transcriptomic programs to distin-
guish patients with longer versus shorter survival (p≤0.01). GBM immune
enrichment was highly associated with the pre-treatment tumor mesenchymal
subtype and patient gastrointestinal bacterial taxa profile.

Glioblastoma (GBM) is the most common primary malignant central
nervous system tumor in adults and invariably carries a poor prognosis
with a disease trajectory often marred by substantial neurologic
morbidity and progressive disability. Despite optimizedmultimodality

treatment that typically includes surgery, radiation, and alkylating
chemotherapy, clinical trials including contemporary trials have
reported a median overall survival (mOS) of only 14 to 16 months1–4.
Recurrence is inevitable and at time of recurrence,mOS is on the order
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of 6 to 9 months5–7. Recent efforts have been focused on advancing
immunotherapy and specifically investigating the role, if any, of
checkpoint blockade to improve the outcomes for this devastating
disease.

Themajority ofGBMpatients (61%) have tumorswith at least 1% or
more Programmed death ligand 1(PD-L1)-positive cells, and 38% have
at least 5% or greater PD-L1 expression. PD-L1 is commonly expressed
on the GBM-infiltrating T cells of which there is a paucity in tumor
tissue8. Expressionof both PD-L1 andPD-1 arenegative prognosticators
for GBM outcome8. Unfortunately to date, PD-1 blockade has demon-
strated limited efficacy in GBM patients9,10 with the exception of
responses seen in patients with mismatch repair deficiencies11–13. The
lack of efficacy has been ascribed to multiple factors including tumor
heterogeneity14, systemic and local immunosuppression15,16 and the
abundanceof tumor-associatedmacrophages (TAMs)whichare locally
immunosuppressive and abundantly present in the GBM tumor
microenvironment17,18. A limitation of prior CPI studies in GBM has
been the lack of immune-predictive biomarkers and comprehensive
genomic characterization of tumor samples. The role of checkpoint
blockade as anefficacious therapy inGBMhasbeen overall limited, but
optimism was recently renewed following work performed by
Cloughesy et al. which demonstrated that recurrent GBMpatients who
received neoadjuvant PD-1 monoclonal antibody blockade with pem-
brolizumab with continued adjuvant pembrolizumab following plan-
ned surgical resection had improved OS and progression free survival
(PFS) in contrast to patients who did not receive neoadjuvant
pembrolizumab19.

The benefit of the neoadjuvant PD-1 blockade is believed to be
primarily driven by the re-activation of exhausted T cells and
the possible modulation of the tumor microenvironment to influence
non-T cell populations20,21. Single-cell RNA and TCR sequencing
analysis suggests that neoadjuvant PD-1 blockade may expand the
cytotoxic CD8 T cell population in the peripheral blood that traffic to
the tumor which implies systemic T cell activation22. However, TCR
analysis has revealed that the cytotoxic effector T cells transition into
progenitor exhausted T cells that have lost their ability to exert
effector function22.

Recent studies have highlighted the diverse immune profiles
observed among GBM tumors23,24. Standard of care radiation and
chemotherapy has been shown to increase antigen presentation and
promote a pro-inflammatory tumor microenvironment25. The strategy
of this clinical trial is to leverage these features of GBM by combining
atezolizumab (PD-L1 inhibitor) with standard of care radiation therapy
and temozolomide followed by continuation of atezolizumab with
adjuvant temozolomide in newly diagnosed GBM patients to improve
clinical outcomes in a safe and effectivemanner. To elucidate potential
mechanisms and biomarkers associatedwith treatment benefit, wewill
perform whole exome sequencing (WES) with somatic mutation and
somatic copy number alteration (SCNA) analysis, whole transcriptome
sequencing, and multiplex immunofluorescence imaging on pretreat-
ment tissue. Metagenomic sequencing of fecal samples will also be
performed on a subset of patients.

Checkpoint inhibitor therapy has limited efficacy in the outcomes
of patients with GBM underscoring the need to better understand
factors thatmay contribute to resistance and treatment benefit. In this
single arm prospective clinical trial, concurrent atezolizumab with
radiation and temozolomide is safe with modest efficacy in patients
with newly diagnosed GBM. Patients with GBM harboring an EGFR
mutation is associatedwith a relativelyworsemOS following treatment
compared to patients with tumors enriched with a PTEN mutation.
GBM immune enrichment is highly associated with the pre-treatment
tumor mesenchymal subtype and fecal microbiome analysis identifies
distinct bacteria differentially enriched by OS at the single taxa level
and warrants further investigation.

Results
This study tested the safety and efficacy of atezolizumab adminis-
tered in combination with radiation and TMZ (concurrent stage) fol-
lowed by atezolizumab administered in combination with TMZ
(adjuvant stage) in newly diagnosed GBM patients based on theWHO
2016 classification criteria26, unselected for MGMT status (Fig. 1A). In
addition to scheduled MRI brain imaging, tumor and microbiome
correlative molecular analyses were performed. A total of 78 GBM
patients were screened and consented between August 2017 and July

Concurrent Adjuvant
Newly Diagnosed

GBM

Fig. 1 | Assessment of Atezolizimab (anti-PD-L1) in newly diagnosed GBM patients. A Schematic of key clinical trial and correlative features. Created in BioRender.
Woodman, S. (2024) https://BioRender.com/o72r244. B Cohort consenting and screening relevant to final correlative analysis.
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2019. Eighteen patients were eliminated during screening, and 60
patients were treated (Fig. 1B). Baseline patient characteristics are
shown in (Table 1) for age, sex, KPS, isocitrate dehydrogenase (IDH)
mutation status, O6-methylguanine DNA methyltransferase (MGMT)
methylation status. 28 of the 60 patients were on dexamethasone at
time of trial registration (0–8 milligrams daily). Trial registration
required that a baseline MRI be obtained no more than 14 days prior
to study enrollment on a stable dose of steroids no greater than 4mg
a day of dexamethasone for at least 5 days prior to treatment start.

Safety
Atezolizumab in combination with radiation and temozolomide was
generally well tolerated. The administration of atezolizumab in our
newly diagnosed GBM patients receiving standard of care (SOC) was
not associated with any new, unreported toxicities. 56.7.4% (34/60) of
patients experienced grade >3 possibly, or probably, or definitely
related to treatment adverse event. The most common treatment
related toxicities were lymphopenia (38.3%), thrombocytopenia
(8.3%), alanine aminotransferase (ALT) increased (8.3%), fatigue, con-
stipation and cerebral edema (5%) (Supplemental Table 1). One patient
was removed during phase 1 due to a DLT, grade 3 hepatitis and grade
3 pneumonitis probably due to atezolizumab. Two patients were
removed during phase II due to grade 4 hepatitis probably related to
atezolizumab. The trial was not stopped early during the safety run in
phase and continued to phase II and completed the full accrual of 60
patients.

Efficacy
Concurrent use of atezolizumab with radiation and TMZ was tolerable
and demonstrated efficacy in line with published trials for newly
diagnosedGBM. As of the cutoff date of 11May 2023, the Kaplan-Meier
estimated median follow-up time was 51.7 months. Of the 60 patients,
56 with IDH1 wild-type and 4 with IDH1 mutant tumors, reached an
mOS of 18.0 months (95% CI [14.2, 25.0]). Among the IDH1 wild-type
group, 50 out of 56 patients had died, resulting in an mOS of 16.1 (95%
CI [13.9, 24.6]) months. MOS for patients with MGMT methylated
tumors was 25.4 (95% CI [10.9–40.9]) compared to 14.6 (95% CI
[13.6–22.9]) in patients with MGMT unmethylated tumors. (Supple-
mental Fig. 1) Out of the 60 patients treated 6 (10%) had a complete
response (CR) and 8 (13.33%) had a partial response (PR) with a dura-
tion of response of 13.91 months (95%CI [6.67–32.92])

Somatic mutation and copy number profiles were consistent
with known aberrations in GBM
Somatic mutation testing was performed on pre-treatment IDH1
wildtype samples (n = 43 samples). Themost frequent genes harboring
somatic mutations were PTEN (53%, n = 20), TP53 (32%, n = 12), and
EGFR (21%, n = 8), consistent with frequencies observed in prior inde-
pendent GBM cohorts27,28 (Fig. 2A). The SCNA profile was also akin to
prior reports, showing broad gains across chromosome 7, and nar-
rower gains in 12q14.1 and 14q11.2, as well as, losses across chromo-
some 10 and narrower losses in 9p21.3/22.2 and 17p11.2
(Supplemental Fig. 2A)

Unsupervised cluster-based analysis identifies key molecular
features associated with anti-PD-L1-treatment patient overall
survival
To better understand the relationship between molecular features in
GBM tumors and clinical outcome, unsupervised hierarchical cluster-
ing was performed on pre-treatment GBM tumor samples using global
genemutation profiles fromWES (n = 29). Samples separated into two
major clusters: all cluster A tumors harboredmutations in PTEN, whilst
no tumors in cluster 2 possessed PTENmutations. Rather, cluster Bwas
highly enriched in EGFR mutant tumors (Fig. 2B). A tumor harboring
both a PTEN and an EGFR mutation was assigned to cluster A, indi-
cating similarity to PTEN/non-EGFRmutant tumors compared to those
with an EGFR/non-PTEN mutation status. Patients with cluster A
tumors (i.e., PTEN mutant samples) showed a statistically significantly
bettermOS from the time of treatment initiation compared to patients
with cluster B tumors (p = 0.013, HR = 0.325 (95% CI [0.128, 0.823])
(Fig. 2C). Notably, among the four patients with available PTEN/EGFR
mutation status and still living at the most recent data cut-off date,
three had tumors with a PTEN mutation, and none harbored an EGFR
mutation.

We next assessed the unsupervised clustering of the tran-
scriptome (Fig. 2D). Among the most highly differentially expressed
genes in cluster 1, were C1QA, C1QB, FCER1G and Collagens 1A1, 1A2
and 3A1 (Supplemental Fig. 2B). Patients with cluster 1 tumors trended
toward achieving a better mOS (p =0.076, HR = 1.826 (95% CI [0.931,
3.583])) than those in cluster 2 (Fig. 2E).

An unsupervised clustering-based analysis, like that deployed for
global gene mutation- and transcriptome data was performed using
global SCNAs. Differential copy number alteration groups failed to
demonstrate an OS difference (Supplemental Fig. 2C). For each of the
molecular features analyzed (viz., gene mutation, SCNA and tran-
scription profile), the patients’ age, sex, dexamethasone treatment and
tumor MGMT methylation status failed to account for the clustering
differences observed (p > 0.05).

Gene set enrichment analysis of tumors from patients with
higher vs. lower mOS
To determine pre-treatment gene expression programs associated
with differential OS following treatment initiation, pretreatment GBM
samples were divided into low and high OS groups (mOS= 16.1
months). Gene Set Enrichment Analysis (GSEA) performed on the
entire set of transcribed genes in each tumor demonstrated a marked
enrichment in immune-related genesets associated with a longer OS,
notably expression programs associated with interferon gamma and
inflammatory response, as well as antigen presentation were highly
represented (p = 0.0015 - 0.038, FDR-corrected, Fig. 3A). A detailed
analysis of specific immune marker transcription profiles showed ele-
vated levels of CD14, CD86, CCR2, CCR5, HLA-A and HAVCR2 (aka
TIM3) in the tumors of patients who achieved longer OS (Fig. 3B). The
cytolytic score, key immunological features known to be associated
with immune checkpoint inhibitor clinical benefit, were also elevated
in GBM tumors of patients who achieved a higher mOS (Fig. 3C)29.

Table 1 | Patient characteristics

Patient Characteristics

Demographics

Age, mean±s.d. 57.8 ± 12.7

Sex, n (%)

Male 41 (68)

Female 19 (32)

KPS, mean ± s.d. 90 ± 8.1

Steroid use at registration

Patient receiving steroids (n) 28/60

Daily dosage, mg/day (range) 0-8

MGMT status, n (%)

Methylated 18 (30%)

Unmethylated 33 (55%)

Indeterminate 7 (12%)

Unknown 2 (3%)

IDH status, n (%)

WT 56 (93%)

Mutant 4 (7%)
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Highly immune infiltrated GBM tumors are associated with
specific immune cell types, themesenchymal GBM subtype, and
fecal microbiome profiles
To characterize the immune enrichment observed in tumors, an
immune metric, the ESTIMATE Immune Score (EIS) was derived for
each GBM sample using the ESTIMATE algorithm (See Materials and
Methods)30. Samplesweremedian-divided into low versus high EIS and
Kaplan-Meier analysis performed. Notably, patients with GBM tumors
having a lowEIS showed a 14.5monthsmOS,while thosewith a high EIS
displayed a 24.8 months mOS (p = 0.02, HR =0.45 (95% CI
[0.23–0.90]), Fig. 4A). In addition, 21% of the high EIS group was still
alive at 48.7 months. A similar analysis of IDH1 wildtype GBM tumors
(n = 143) from the Cancer Genome Atlas31 in which patients had not
received immunotherapy, failed to show an association of EIS with OS

(low EISmOS= 13.6months versus high EIS 11.7 monthsmOS, p =0.77,
HR = 1.06 (95%CI [0.73–1.53]) Fig. 4A). To further assess if theobserved
correspondence between baseline tumor EIS and OS in our
immunotherapy-based studywas distinct, we analyzed the baseline EIS
relative to OS in another independent set of GBM tumors (n = 83)
receiving standard of care therapy32. As with TCGA, there was no sta-
tistically significant difference between low versus high EIS with OS in
this cohort (low EIS mOS = 19.2 months versus high EIS 24.6 months
mOS, p =0.25, HR = 0.77 (95% CI [0.48–1.21]), Fig. 4A).

To delineate the immune cell types that underlie the immune
enrichment in tumors associated with improved survival outcome in
anti-PD-L1 treatedpatients, theXcell immunedeconvolution algorithm
was employed (See Materials and Methods)33. The majority of cell
types in high EIS GBM tumors harbored myeloid lineage markers:
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Fig. 2 |Molecular characterizationofPre-treatmentGBMtumors. AOncoplot of
recurrent somatic mutations. BUnsupervised clustering of tumors based on global
gene mutation profiling. C Kaplan-Meier curve of OS for patients with EGFR vs.
PTEN mutant GBM tumors. The Cox proportional hazards model-derived hazard
ratio and p-value from the Wald test are displayed. Source data are provided as a
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from the Wald test are displayed.
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activated dendritic cells, monocytes, macrophages, with notably a
more statistically significant M1 macrophage profile. In addition, a
lymphoid lineage cell type identified to be associated with high EIS
GBM tumors was CD4+ effector memory T cells (Fig. 4B, C). Patients
whose tumors had a higher percentage of cytotoxic (CD3 +CD8 + )
T cells that expressed PD-L1 achieved a longer mOS p = 0.036030,
HR =0.439 (0.205–0.940)) (Fig. 4D), not observed in PD-L1 expressing
GFAP + , CD68 + or CD3 +CD8- cells.

A recent study by Lee et al.22, using scRNAseq to interrogate
immune cell subsets in GBM identified 11 subclusters of myeloid cells.
We leveraged these subcluster transcription profiles to analyze our
cohort samples. Notably, the dendritic cell “DC” subcluster profile
demonstrated a statistically significant mOS difference (Supplemental
Fig. 3A), consistent with the immune deconvolution we performed
(Fig. 4B) identifying activated myeloid dendritic cells to make up a
statistically significant fraction of more highly immune infiltrated
tumors, which corresponded with a better OS. Further subset analysis
by Lee et al.22, identified a CCR7 + LAMP3+ “activated and/or migra-
tory”DC subpopulation to be upregulated following neoadjuvant anti-
PD-L1. We identified these two markers to be higher in tumors asso-
ciated with increased OS in our cohort (Supplemental Fig. 3B). These
data suggest that the dendritic cell profile of primary GBM pretreat-
ment tumors associated with an improved clinical outcome may be
better primed for effective anti-PD-L1 treatment.

We also leveraged the 11 scRNAseq derived subclusters compos-
ing the lymphoid cell compartment of GBM to assess pretreatment
tumors in our cohort22. Among these lymphoid subclusters, only L4
and L5 were associated with better OS in our cohort (Supplemental
Fig. 3C). A granular analysis of the genes within the L4 set revealed the
expression of lymphocyte markers and antigen presenting genes (e.g.,
CD3E, CD4, HLA-A, PSMB8) to be more elevated in our cohort of GBM
tumors associated with a higher OS, while the expression of multiple
inhibitory genes (e.g., FOXP3, CD27, CD28, TNFRSF18, ICOS, CTLA4,
TIGIT) showed no statistically significant difference. A more detailed
examination of the genes within the L5 set revealed the expression of

cytolytic enzyme genes, consistent with the cytolytic score (geometric
mean of GZMA and PRF1 gene expression) (Fig. 3C), to be statistically
higher in the tumors of patients in our study with greater OS. The CD4
compartment markers22 have multiple genes associated with the
immune inhibitory system (e.g., CTLA4, PDCD1, LAG3, ICOS, TNFRSF9
(aka, 4-1BB), HAVCR2 (aka, TIM-3)). Of these, TNFRSF9 and HAVCR2
were more elevated in the tumors of patients who demonstrated a
longer OS, whilst no statistically significant expression difference was
observed in any of the other immune checkpoint genes (Supple-
mental Fig. 3D).

GBM tumors harboring wild-type IDH1 have been shown by tran-
scriptional profiling to separate into pro-neural, classical and
mesenchymal subtypes31. Pre-treatment GBM tumors in our cohort
likewise parsed into these three subtypes (28.2%, 41.0%, 30.7%,
respectively). Consistent with prior studies31, we observed that
mesenchymal subtype GBMs were markedly enriched in immune cell
content, with 11 of 12 (91.7%) ofmesenchymal tumors having a high EIS,
as compared to 27.2% of proneural and 31.3% of classical subtypes,
respectively (Fig. 4D). Notably, anti-PD-L1 treated patients with
mesenchymal subtypeGBM tumors achieved a greatermOS compared
to the proneural and classical subtypes (26.5 months vs. 15.5 and
15.6 months., respectively).

Given recent evidence supporting the impact of the gastro-
intestinal microbiomeon tumor immunology and clinical outcomes of
immune checkpoint inhibitor therapy, we leveraged a set of fecal
samples collected from a subset of trial patients. The resulting
microbiome profiles derived from metagenomic shotgun sequencing
processed with MetaPhLAn 3.034 were evaluated mainly based on
survival metrics. Pre-treatment samples from patients with longer
overall survival showed similar alpha diversity levels, a measurement
of within sample diversity, as assayed by number of observed species
and derived Inverse Simpson scores (Fig. 5A, B)

We evaluated beta-diversity, a measurement of diversity across
samples, by principal coordinate analysis to compare the structure of
the fecal microbiomes in low versus high OS. Although not reaching
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statistical significance, pre-treatment samples from patients with
longer overall survival clustered together and apart from those who
experienced shorter survival (Fig. 5C). Due to the observed separation
of centroids between short and long survivors, we aimed to determine
if there were compositional differences that distinguished both
groups. After running a differential abundance analysis using ANCOM-
BC35,36, we observed bacteria mainly of the Bacillota phylum, also
known as Firmicutes, enriched in long OS patients. (Fig. 5D).

The same analyses of alpha and beta diversity were performed
comparing patients with low versus high EIS tumors. Notably, patients
with a higher EIS had a higher observed alpha diversity (Supplemental
Fig. 4A, B). As with OS, principal coordinate analysis to compare the
structure of the fecalmicrobiomes in patients lowversus high EISGBM
was not statistically significant, but a differential abundance analysis
also showed Bacteroides thetaiotaomicron (or B. theta) to be enriched
in patients with low EIS tumors (Supplemental Fig. 4C, D).

Immune infiltration and EGFR mutation are independent pre-
dictors of OS in anti-PD-L1 treated GBM
Many prognostic and predictive markers have been reported for GBM
(viz, MGMT methylation, gross total resection (GTR) vs. subtotal
resection (STR), age, sex and performance status)37–40. Univariate KM
analysis in this study showed high EIS and EGFR mutation status to
each be statistically significantly associated with better and worse OS,
respectively. We thus performed a multivariate analysis to assess the
relationship between OS and each known prognostic/predictive fea-
ture. Although, theHRs associatedwithmethylatedMGMT (0.55),male

(1.41) and STR (3.76) did not reach statistical significance, they each
trended in a manner consistent with prior reports. Patients with high
EIS GBM showed a reduced hazard ratio (HR =0.23, 95% CI
[0.07–0.78], p = 0.019), while those with EGFR mutated tumors
showed an elevated hazard ratio (HR = 6.27, 95% CI [1.20–32.62],
p =0.029) (Fig. 6A), making these two features the most statistically
significant relative to anti-PD-L1 mediated OS in this cohort. Figure 6B
shows a summary graphic of this study in which we identified
newlydiagnosedGBMpatientswho achieved a longerOS after anti-PD-
L1 treatment to have transcription-based markers for activated mye-
loid dendritic, M1 macrophage, and effector CD4+ memory cells, as
well as, a higher cytolytic score and CD8A/B levels, consistent with
greater protein marker profiles for cytotoxic T cells. Among these IDH
wild-type tumors, global gene mutation profiling separated tumors
into two distinct groups, one group harboring PTEN mutations and
achieving a longer OS compared to a group possessing EGFR
mutations.

Discussion
In this study the concurrent use of atezolizumab (anti-PD-L1) with
radiation andTMZwas tolerable anddemonstrated efficacy in linewith
published trials for newly diagnosed GBM. We leveraged genomic,
transcriptomic and multiplex immunofluorescent approaches on
tumors, as well as, metagenomic analysis on stool samples to identify
correlates of differential clinical outcome to SOC plus anti-PD-L1
therapy. Our GBM cohort’s global pre-treatment molecular profiles
were consistent with previously reported cohorts. However, with
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deeper interrogation, using both unsupervised and supervised ana-
lyses, we observed specific molecular features that distinguished
patients who achieved a longer OS with anti-PD-L1 treatment.

Multiple studies indicate that GBM tumors with a mesenchymal
subtype tend to display more aggressive behavior and greater resis-
tance to standard-of-care approaches31,41. Consistent with prior stu-
dies, we observed that mesenchymal subtype tumors showed
comparatively elevated markers of immune infiltration. Our study
further demonstrated that patients whose tumors displayed a greater
immune infiltrate achieved a longer OS with anti-PD-L1 treatment.
Importantly, the evaluation of tumors in two distinct and independent
GBM cohorts from The Cancer Genome Atlas (TCGA) and Glioma
Longitudinal AnalySiS (GLASS) Consortium (Fig. 4A) who underwent a
chemoradiation regimen, but did not receive anti-PD-L1 treatment,
failed to show a statistically significant relationship between high EIS
and OS. Thus, tumor immune infiltration alone appears insufficient to
mediate a longer survival outcome, but the presence of an immune
infiltrate may mediate the effects of anti-PD-L1 treatment resulting in
the higher OS observed in a subgroup of our cohort. This potential
signal of activity warrants further investigation in a future trial. Our
study supports the hypothesis that the mesenchymal subtype of GBM

may also particularly benefit from anti-PD-L1 approaches given its
inherent immune status.

Distinct immune programs were observed to be associated with
improved OS in a statistically significant manner. The tumors of
patients who achieved a higher mOS showed enrichment for activated
myeloid dendritic cell,M1macrophage, andCD4 effectormemory cell-
states, indicative of an active immunogenic milieu. In addition, the
cytotoxic T cell protein markers and molecular executors of immune-
mediated cytotoxicity were notably elevated in the GBM tumors of
patients with longer mOS, whereas tumors that showed no or low
immune infiltration tended to be more enriched in neurodevelop-
mental markers. We leveraged recently published single cell gene
expression profiles of immune cell types in GBM22,42 to better char-
acterize the pretreatment transcriptomics of lymphoid and myeloid
profiles in our cohort. Despite the lymphoid single cell profiles having
multiple immune checkpoint markers, most genes did not display
differential expression between survival groups. Differences were
observed in lymphocyte markers and antigen presenting genes, indi-
cating that the separation in survival outcomes within our cohort was
being driven more by the presence of positive anti-tumor features
rather than the inherent absence of immunosuppressive factors.
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Among pretreatment myeloid subsets, only the dendritic cell, specifi-
cally the CCR7 +DC profile, was associated with longer OS in our
cohort, further supporting the prominence of an antigenic and
immune responsive phenotype for improved clinical outcome. This
more favorable overall lymphoid and myeloid immune milieu, in
addition to a higher percentage of cytotoxic T cells expressing PD-L1,
may account for the separation in mOS to be observed with the
addition of single-agent anti-PD-L1.

Given recent data showing that specific gastrointestinal micro-
biome profiles affect tumor immune status and immune checkpoint
inhibitor therapy, we analyzed samples collected from a subset of trial
patients. The observation that pre-treatment samples from patients
whose tumors demonstrated greater immune infiltration tended to
have more diverse and enriched gastrointestinal microbiota, and that
patients with these characteristics tended to have a longer OS, is
consistent with a growing body of evidence that host, tumor and
microbiome each contribute to the efficacy of immune checkpoint
blockade therapy43,44.

Unsupervised global gene mutation tumor profiling separated
patients into two subgroups with markedly different mOS. Further
analysis showed all the PTENmutant tumors to be in the subgroupwith
a better OS, whilst EGFR mutations were enriched in the other sub-
group. These results are intriguing, as both PTEN and EGFRmutations
have been proposed to have immune suppressive effects in a variety of
cancers. Notably, the PTEN mutant tumor cohort also showed a sta-
tistically significantly better OS compared to the PTEN/EGFR wildtype
group, suggesting that the difference in survival between the two
subgroups may entail more than the relative effect of their respective
PTEN or EGFRmutations, and eachmay serve as amarker of an overall
cellular state with divergent immune responses. These findings pro-
vide a further impetus to investigate the functional relevance of PTEN
and EGFR mutations on GBM tumor immunity and anti-PD-L1 efficacy.

Multiple factors have been shown to be associated with clinical
outcome in the standard-of-care chemo-radiation setting (MGMT
methylation, stereotactic intervention, high KPS, age). In this
atezolizumab-treatment trial, MGMT methylation trended toward a
greater OS, while less than a gross total resection and being biologi-
cally male trended to a lesser OS benefit, consistent with prior studies.
Neither KPS nor age were statistically significant factors, likely given
the entrance requirements of the study and relative cohort size.
Notably, tumor immune infiltration and PTEN/EGFR mutation status
were the only statistically significant, independent factors associated
with OS in this study.

Our study shows that a substantial subset of GBM patients have
tumors that may be more amenable to immune-based therapy and
suggests potential future target opportunities. First, given that GBM
tumors display a range of myeloid/macrophage milieus, deploying
agents that shift profiles toward an even greater pro-inflammatory,
anti-tumor phenotype can enhance the effects of checkpoint blockade
therapy. Second, among the immune checkpoint molecules, TIM3
(aka, HAVC2) showed near ubiquitously elevated gene expression in
more infiltrated tumors. TIM3 protein expression is usually an indi-
cator of T cell dysfunction. However, pre-clinical studies indicate that
combining TIM3 inhibition with PD-L1/PD1 axis inhibitors has a
synergistic effect on inhibiting cancer cell growth and tumor antigen-
specific T-cell response. Third, observations from the gut microbiome
analysis are particularly intriguing in a CPI-treated GBM cohort. Cor-
relation of the gut microbiome profile with OS, as well as the tumor
immune infiltration is consistent with observations in other tumor
types and warrants further investigation of the potential impact of the
gut microbiome in GBM patients treated with IO and combination
therapy. Finally, our study supports the view that the timing and
durationof anti-PD-L1 treatmentmaybepivotal in thenewly diagnosed
setting, consistent with the efficacy observed when neoadjuvant anti-
PD-L1/PD1 inhibition was employed in recurrent GBM disease19.

Methods
Study design and participants
This research complies with all relevant ethical regulations. The Insti-
tutional Review Board (IRB) at the University of Texas MD Anderson
Cancer Center approved the studyprotocol. NCT03174197was aphase
I/II trial in patients with newly diagnosed GBMwhich was conducted at
The University of Texas MD Anderson Cancer Center (MD Anderson).
Patients were unselected forMGMT status. MGMT is a well-established
clinical prognostic andpredictive biomarker in glioblastoma in regards
to response to alkylating therapy. During the Phase I safety run in
component (N = 10), atezolizumab was administered intravenously
every 2 weeks in combination with radiation and oral temozolomide
(concurrent stage) followed by atezolizumab intravenously every
2 weeks administered in combination with oral temozolomide (adju-
vant stage) days 1–5 out of a 28 day or 4 week cycle. With acceptable
toxicity profile, the trial continued from the safety run in phase to
Phase II, duringwhich a larger number ofpatients (N = 50)were treated
with atezolizumab in combination with radiation and temozolomide
during the concurrent stage and atezolizumab in combination with
temozolomide during the adjuvant stage. Patients had to be at least 18
years old, have histologically confirmed glioblastoma or gliosarcoma
according to WHO 2016 criteria, and a Karnofsky Performance Scale
(KPS) score ≥60. A baseline brain MRI obtained no more than 14 days
prior to study enrollment on a stable or tapering dose of steroids no
greater than 4mg a day of dexamethasone for at least 5 days was
required prior to treatment start. Approval for the study was granted
through the IRB atMDAnderson, and all patients had providedwritten
informed consent before study entry. Use of human material was
approved. This trial was performed according to the Declaration of
Helsinki’s principles.

Toxicity monitoring and futility monitoring of overall survival
Toxicitywasmonitored usingBayesiancontinuousmonitoring45where
the toxicity evaluation endpoint was defined as treatment-related
unmanageable toxicities, including grade 3 or 4 AEs that require ter-
mination of the treatment during the first 10 weeks of treatment. It is
assumed that median time to DLT followed an Inverse Gamma dis-
tribution and the individual times to DLT followed an exponential
distribution. Let mE represent the median in the newly accrued
(experimental) patients and letmS represent themedian tobe used for
comparison. For the comparisonmedianwe specify an InverseGamma
prior with mean= 19.43 weeks and SD =0.10 weeks – essentially a
constant 30% 10-week toxicity rate. For the experimental median we
specify an Inverse Gamma prior with mean of 19.43 weeks and
SD= 10.0 weeks. Monitoring was continuous with the rule to stop if
Pr(mE > mS | data) <0.05. Meanwhile, we applied the same method to
monitor time to death continuously starting with the 10th patient
assuming the median time to death follows an Inverse Gamma dis-
tribution and that the individual death times follow an exponential
distribution. Let mE represent the median in the newly accrued
(experimental) patients and let mS represent the historical median to
be used for comparison. Based on historical data the median death
time is about 15 months. For the historical median we specify an
Inverse Gamma prior with alpha = 58.25 and beta = 858.75 (which has
mean= 15.0 and SD= 2.0). For the experimental median we specify an
Inverse Gamma prior with alpha = 4.25 and beta = 48.75 (which has a
mean of 15.0 and SD= 10.0). The maximum sample size is 60 and the
expected accrual rate is 2.5 per month. Monitoring will be continuous
with the rule to stop if Pr(mE > mS + 6 | data) <0.05.

Imaging protocol- and imaging response-assessment criteria
MRI scans were acquired within 14 + /- 3 days of registration, 21-28 + /-
2 days following completion of the concurrent stage and then every
8 weeks or after every 2 cycles of adjuvant treatment of atezolizumab
and temozolomide on a 1.5 or 3.0 TeslaMRI scanner using the standard
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protocol: axial T1-weighted sequence (T1WI) (repetition time [TR],
700ms; echo time [TE], 12ms; slice thickness, 5mm; acquisition
matrix 352 × 224); axial fluid attenuation inversion recovery (FLAIR)
sequence (TR, 10000ms;TE, 140ms; slice thickness, 5mm; acquisition
matrix, 256× 256); and axial post-contrast T1WI, acquired 5min after
the contrast injection (TR, 750ms; TE, 13ms; slice thickness, 5mm;
acquisition matrix, 384× 256). The conventional T1WI and FLAIR
sequences were used to assess response to therapy via the iRANO
criteria46. Contrast-enhancing lesions with bidimensional measure-
ments of >1 cm were considered as measurable (index) lesions,
whereas smaller lesions and those with non-enhancing T2/FLAIR
hyperintensity were considered to be non-measurable (non-index)
lesions. Patients were categorized based on best response as having: 1)
progressive disease; 2) stable disease; 3) partial response; or 4) com-
plete response.

Correlative analyses
An abundance of data show isocitrate dehydrogenase (IDH) mutant
GBM tumors to be molecularly and phenotypically distinct and asso-
ciated with markedly better survival outcomes47. Thus, the correlative
analyses focused on patients with IDH wildtype GBM consistent with
the updated WHO 2021 criteria, and the IDH mutant tumors were not
carried forward.

Sequencing and data possessing
BCL (raw output of Illumina HigSeq) files are processed using Illumi-
na’s Consensus Assessment of Sequence and Variation (CASAVA) tool
(http://support.illumina.com/sequencing/sequencing_software/
casava.html) for demultiplexing/conversion to FASTQ format, which is
the standard input for most aligners and downstream analytic tools.
For whole exome sequencing, FASTQ files are aligned to the reference
genome (human Hg19) using BWA48 with 3 mismatches with 2 in the
first 40 seed regions for sequences less than 100 bporusingBWAmem
with 31 bp seed length for sequences over 100bp. The aligned BAM
files are subjected to mark duplication, re-alignment, and re-
calibration using Picard and GATK49 before any downstream ana-
lyses. For RNA sequencing, FASTQ files of RNA samples are processed
using both STAR50 following the two-step alignment procedure and
TopHat51 and Cufflinks52.

Somatic copy number analysis
Somatic copy number alterations were identified fromWES data using
ExomeLyzer53, followed byCircular Binary Segmentation54. Segmented
copy number values were corrected by tumor purity using the In Silico
Admixture Removal (ISAR) procedure55, where the tumor sample
purity and ploidy estimates were calculated using sequenza
algorithms56. Subsequently, statistically significant focal copy number
alterations were identified from the ISAR-corrected segmented data
using GISTIC 2.0.225. The following parameters were used: amplifica-
tions threshold: 0.3, deletions threshold: 0.3, focal length cutoff: 0.70,
gene gistic: yes, confidence level: 0.99, q-value threshold: 0.25, join
segment size: 4, remove X: no, cap val: 1.5, run broad analysis: yes,max
sample segs: 2000, arm peel: yes, gene collapse method: extreme.
Tumors were then clustered into a 2-cluster solution based on thre-
sholded copy number at reoccurring alteration peaks from GISTIC
output “all_lesions.conf_99.txt file”. Function GisticChromePlot
implemented in P package “maftools”were used to plot gistic score in
file “scores.gistic” along linearized chromosome.

Mutation analysis
Mutations are identified from two sources: 1) Samples collected for
research purpose were subjected to whole exome sequencing. 2)
Samples collected for clinical mutation identification were subject to
sequencing by one of these four next generation sequencing (NGS)-
based panels: “Solid Tumor Genomic Assay 2018” (coding sequence of

134 genes and copy number variations in 47 genes), “Solid Tumor
Genomics Assay v1” (coding sequence of 128 genes and selected copy
number variations (amplifications) in 49 genes), “50-Gene Somatic
Mutation Analysis Panel Report “ (coding sequence of a total of 50
genes) and “FoundationOne”. The first three tests were developed and
their performance characteristics determined by the Molecular Diag-
nostic Laboratory (MDL) at the M.D. Anderson Cancer Center.

For WES data, somatic mutations were called using MuTect57;
Short insertions/deletions (indels) were called using Pindel (Ye et al.
2009). Following variant calling, we implemented a series of post-call
quality filters. These filters were designed to retain somatic variants
that met the following criteria: 1) Locate within the targeted sequen-
cing region, 2) Pass mapping quality threshold of 25. 3) Exhibit a sta-
tistically significant different alternate/reference allele ratio (p ≤0.05)
from that of the matched normal sample by proportion test. 4)
Attained adequate coverage (≥10) in both the tumor and normal
samples. 5) pass the tumor event log likelihood threshold of 6.3.

Public GBM datasets
The Cancer Genome Atlas (TCGA) GBM dataset: Normalized gene
transcript abundances (data_mrna_seq_v2_rsem.txt), mutation calls
(data_mutations.txt) and clinical data (data_clinical_sample.txt, data_-
clinical_patient.txt) of GBM samples containedwithin the TCGA cohort
(Firehose Legacy) were accessed from cBioPortal (https://www.
cbioportal.org). Transcription profiles of GBM samples (n = 144) that
are IDH wildtype as determined by mutation calls and collected as
primary tumor were used for downstream analysis.

The Glioma Longitudinal AnalySiS (GLASS) GBM dataset: Clinical
data as well as normalized gene transcript abundance matrices of
GLASS dataset were acquired fromSynapse (https://www.synapse.org/
glass)32. To ensure meaningful comparison, we limited our analysis to
baseline GLASS GBM samples (n = 83) that are IDH wildtype, and had
received full treatment, as indicated by a value of “1” in columns
labeled “TMZ+RT, TMZ,” “treatment_tmz,” “treatment_concur-
rent_tmz” and “treatment_radiotherapy.”

Differential gene expression and gene set enrichment
Gene expression levels weremeasured as log2-transformed transcripts
per million (TPM) (log2(TPM+ 1)). For identifying the differentially
expressed genes (DEGs), we employed the “limma trend” mode avail-
able in the limma package58. This method uses a linear model to esti-
mate a trendover all genes and adjusts the differential expression tests
accordingly58. P-values are adjusted for multiple testing using the FDR
method. Genes with an adjusted p-value below 0.05 were considered
as DEGs.

Gene set Enrichment Analysis (GSEA) was conducted with fast
gene set enrichment algorithm from R package “fgsea” (version
1.16.0)59,60 with default parameters. The gene set used for enrichment
analysis is the “hallmark” gene set, which includes 50 gene sets that
representwell-defined biological states or processes. Gene sets with an
FDR corrected p-value below 0.05 were considered statistically
significant.

ESTIMATE score, immune deconvolution and enrichement
analysis of scrnaseq-derived immune profiles
We used the R package “immunedeconv” (version 2.1.0) and its
“deconvolute_estimate” function to calculate ESTIMATE score61. The
function integrates the ESTIMATE algorithm, which predicts tumor
purity, and the presence of infiltrating stromal/immune cells in tumor
tissues using gene expression data, through GSEA30.

Deconvolution of the immune microenvironment was conducted
via function “deconvolute” in R package “immunedeconv”, with
method parameter set as “xCell” and the rest as default. Wilcoxon test
(two sided) was used to examine the difference in cell type abundance
between groups.

Article https://doi.org/10.1038/s41467-025-56930-7

Nature Communications |         (2025) 16:3950 10

http://support.illumina.com/sequencing/sequencing_software/casava.html
http://support.illumina.com/sequencing/sequencing_software/casava.html
https://www.cbioportal.org/
https://www.cbioportal.org/
https://www.synapse.org/glass
https://www.synapse.org/glass
www.nature.com/naturecommunications


Markersof various immune cell populations identifiedby Lee et al.
were used as gene sets to calculate corresponding enrichment scores
for each sample. Enrichment was performed using single-sample Gene
Set Enrichment Analysis (ssGSEA) via “ssgsea” function fromRpackage
“corto” (version 1.2.4) with default parameters [PMID: 32232425].

GBM transcriptional subtype classification
Glioblastoma transcriptional subtyping was conducted on RNAseq
TPM using the “ssgsea.GBM.classification” R package31 with glio-
blastoma subtype (Classic, Mesenchymal, and Proneural) signatures.
This method quantified an enrichment score for each glioblastoma
subtype in a sample using ssgsea algorithm, as well as a permuation-
basedP-value indicating the statistical significance. For assignment of a
single subtype to each sample, the subtype with the lowest P-value
would be assigned to each sample.

Multiplex immunofluorescence imaging
Tissue image immunoprofiling was conducted using the Opal chemistry
and multispectral microscopy Vectra system (Perkin-Elmer) with 2
multiplex immunofluorescence (mIF) panels: (1) The first panel targeted
CD3, CD8, CD68, PD-1, PD-L1, GFAP. (2) The second panel targeted CD3,
CD8,GranzymeB, FOXP3,CD45RO,CD68, andGFAP. Sources, catalogue
numbers and species of antibodies used are provided in Supplemental
Table 2. Marker expression was then determined using image analysis
software InForm™ 2.2.1. Mutually exclusive combinations of markers on
a per cell basis were created from the InForm cell segmentation files. Of
60 patients enrolled, image immunoprofiling was performed success-
fully on pre-treatment tissue in 47 (IDH-wildtype) patients.

Metagenomic sequencing and microbiome profiling
MetaPhlAn version 3.0 (ref) classified taxonomy (CHOCOPhlan data-
base version 20190134) data was imported into R environment (version
4.4.0) using Phyloseq R Package version 1.48.062 at species level. Alpha
diversity was accessed using three metrics – Observed, Shannon, and
Inverse Simpson. Beta diversity was quantified using Bray-Curtis dis-
tance and statistical significance was evaluated using Adonis2 test
from Vegan package version 2.6-6.1 (https://github.com/vegandevs/
vegan, https://vegandevs.github.io/vegan/) with 1000 permutations.
Differentially abundant species was detected using ANCOMBC R
package version 1.6.235,36.

Survival analysis
Survival was measured from the time of diagnosis commensurate with
the initial study design, as displayed in Supplemental Fig. 1. To analyze
the association between survival and molecular/correlative features,
time from initial treatmentwas employed, allowing for the comparison
with other studies that used this same initial metric. Kaplan-Meier
curves were generated via ggsurvplot implemented in R package
“survminer,” with statistical significance assessed using the log-rank
test and hazard ratio estimated via Cox proportional hazards regres-
sion model implemented in R package “survival” (v 3.4.0). The Cox
proportional-hazards model was also used for multivariate analysis to
determine relative risk and independent statistical significance. Ana-
lyses were performed with R package “survivalAnalysis” (v 0.3.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequencing data, mutation calls and TPMmatrix generated in this
study and relevant non-identifiable clinical metadata have been
deposited in the European Genome-Phenome Archive (EGA) under
accession [EGAD50000001154]. https://ega-archive.org/studies/

EGAS50000000784. These data are available upon request to the
corresponding author for academic cancer research purposes in
accordance with the conditions of consent agreed to by the source
participants. Requests will be addressed within 8 weeks and, if
approved, access will be made available for a oneyear period, renew-
able upon additional request. Processed data generated in this study
are available via https://github.com/WoodmanLab/GBMnat that has
been archived as https://doi.org/10.5281/zenodo.13931489 or pro-
vided in supplemental materials. Source data are provided with
this paper.

Code availability
The custom code for genomic, transcriptomic, and multiplex immu-
nofluorescence imaging analysis is available at https://github.com/
WoodmanLab/GBMnat that has been archived as https://doi.org/10.
5281/zenodo.13931489, and the code for microbiome analysis can also
be found at https://github.com/mda-primetr/Weathers-GBM.IO-2024.
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