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Simple Summary

Glioma is the most common primary malignant tumor of the central nervous system. In
the contemporary era of molecular diagnostics for central nervous system tumors, genetic
profiling has become essential. However, in certain clinical scenarios—such as stereotactic
biopsies, brainstem lesions, or cases involving patients in poor clinical condition who
cannot tolerate repeated resections—tumor tissue samples may be insufficient in quantity
or exhibit low tumor cellularity. To address these challenges, we developed a novel
multi-dimensional prognostic nomogram that integrates tumor immune markers and
clinical variables. This tool provides a robust and clinically applicable approach for the
individualized management of adult patients with primary glioma.

Abstract

Objective: This study aimed to identify the factors associated with overall survival (OS) in
adult patients with primary gliomas, construct a nomogram prediction model, and evaluate
its predictive performance. Methods: Clinical data were retrospectively collected from
adult patients newly diagnosed with gliomas who underwent surgical treatment in the
Department of Neurosurgery of the Fourth Hospital of Hebei Medical University, between
January 2019 and December 2023. External validation was conducted using data from
the China Glioma Genome Atlas (CGGA) database. Data analysis and visualization were
performed using SPSS 26.0 and R software (Version 4.4.1). Results: A total of 257 adult
patients were included in this study. Multivariate Cox regression analysis identified age,
Karnofsky Performance Status (KPS) score, tumor diameter, WHO grade, and postoperative
radiotherapy and chemotherapy, as well as the expression of ATRX, IDH]1, and Ki-67, as
independent prognostic factors. These factors were incorporated into a nomogram for
predicting 1-year, 2-year, and 3-year survival rates. The model demonstrated excellent
discrimination, calibration, and clinical utility in both internal and external validations.
Conclusions: The nomogram model incorporating clinical factors (age, WHO grade),
treatment (radiotherapy, chemotherapy), and tumor markers (ATRX, IDH]1, Ki-67) has
good predictive efficacy and may serve as a practical and effective alternative to molecular
testing for prediction of survival in adult patients with primary glioma.

Keywords: tumor immune markers; immunohistochemistry; glioma; nomogram model;
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1. Introduction

Glioma is the most common primary malignant tumor of the central nervous system
(CNS), accounting for approximately 40-50% of all cases, with an increasing annual in-
cidence rate in adults [1]. Characterized by highly heterogeneous and invasive growth,
gliomas exhibit significantly different prognoses among patients with different subtypes [2].
In the molecular era of CNS tumors’ diagnosis, genetic testing has become indispensable.
However, in certain clinical scenarios, such as patients undergoing stereotactic biopsy,
those with brainstem lesions, or individuals in poor general condition who cannot tolerate
secondary surgery, tumor specimens may be limited in quantity or contain a low tumor
cell content. This often precludes the extraction of sufficient DNA/RNA for genetic testing.
In such cases, immunohistochemistry (IHC) is a better choice [3]. Previous studies have
shown that mutations in ATRX, IDH1, and TP53 are significant predictors of glioma prog-
nosis [4-6]. Additionally, the expression level of Ki-67 intuitively reflects the proliferative
activity of tumor cells [7].

Although molecular typing has improved diagnostic accuracy, dynamic prognostic
assessment tools that integrate molecular characteristics with clinical parameters remain
lacking in clinical practice. In recent years, nomograms have demonstrated unique value in
tumor prognosis models, but current prediction models based on radiomics or genomics
are mostly limited to single data dimensions and fail to fully integrate the systematic asso-
ciations between immunophenotypes, molecular characteristics, and clinicopathological
parameters [8,9].

To address this gap, the present study proposes a novel, multi-dimensional prognostic
nomogram model that integrates tumor immune markers and clinical factors, aiming to of-
fer a more comprehensive and clinically applicable tool for the individualized management
of adult patients with primary glioma.

2. Materials and Methods
2.1. Study Design and Participants

This study retrospectively analyzed the clinical data of patients newly diagnosed
with glioma who underwent surgical treatment at the Department of Neurosurgery of
the Fourth Hospital of Hebei Medical University from January 2019 to December 2023.
Clinical data were collected from medical records, including gender, age, smoking history,
history of head trauma, preoperative Karnofsky Performance Status (KPS) score, symptoms,
tumor diameter, tumor location and distribution, extent of surgical resection, WHO grade,
postoperative treatment regimen, and protein expression status of ATRX, IDH1, etc.

The inclusion criteria were as follows: (1) patients underwent surgical treatment for
the first time in the hospital; (2) complete clinical data records were available; (3) informed
consent was obtained from all patients and their families; (4) patients aged > 18 years.
The exclusion criteria were as follows: (1) patients with other concomitant malignant
tumors; (2) patients with insufficient tumor tissue samples for immunohistochemical testing;
(3) patients with prior treatment history for glioma; (4) patients with pathological types of
ependymoma, subependymoma, or pilocytic astrocytoma; (5) patients aged < 18 years.

To further validate the reliability and generalization ability of the overall survival (OS)
prediction model for glioma patients constructed in this study, an external validation cohort
of 100 patients with comparable baseline characteristics was randomly selected from the
Chinese Glioma Genome Atlas (CGGA) database [10] (http:/ /www.cgga.org.cn accessed
on 7 February 2025).
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2.2. Histopathological Detection Methods

All tumor tissue samples were formalin-fixed and paraffin-embedded (FFPE) fol-
lowing standard protocols. All histopathological diagnoses were jointly confirmed by
two experienced pathologists in our hospital through an independent review of slides. The
criteria for positivity were as follows: under the premise of normal negative and positive
controls, ATRX protein expression was localized in the nucleus, with positive cells > 10%
defined as positive; IDH1-R132H(IDH1) protein expression was localized in the cytoplasm,
with >10% of tumor cells demonstrating cytoplasmic immunoreactivity being defined as
positive [11]; Ki-67 and p53 protein expressions were localized in the nucleus. Positive
P53 was defined as > 10% of nuclei containing positive p53 protein granules. A percent-
age of Ki-67-positive cells < 20% was classified as weak positive (+) and >20% as strong
positive (+).

2.3. WHO Grading Criteria for Glioma

The diagnosis of gliomas is based on the 2016 edition of the WHO Classification of
Central Nervous System Tumors [12]. WHO grade II gliomas include IDH-mutant diffuse
astrocytomas and oligodendrogliomas; WHO grade III gliomas are anaplastic gliomas,
including anaplastic astrocytomas and anaplastic oligodendrogliomas; and WHO grade IV
gliomas are mostly glioblastomas.

2.4. Treatment of Glioma

Surgical strategies were developed by experienced neurosurgeons based on contrast-
enhanced cranial magnetic resonance imaging (MRI) images within 1 week. According
to residual tumor volume shown on cranial CT/MRI images 24-72 h postoperatively,
the extent of surgical resection was classified into subtotal resection (>80% of tumor vol-
ume removed) and partial resection (<80% of tumor volume removed). Postoperative
adjuvant treatments included radiotherapy, concurrent temozolomide chemotherapy, and
adjuvant chemotherapy:.

2.5. Follow-Up

All patients were followed up through a combination of outpatient review and tele-
phone follow-up at 3 to 6 months after surgery. The follow-up deadline was 30 December
2024, with a median follow-up duration of 31.17 months. The OS was defined as the time
from the surgery date to the date of death or the last follow-up.

2.6. Statistical Analysis

Data analysis and visualization were performed using SPSS 26.0 and R language
(version 4.4.1). The Chi-square test was used for categorical variables between groups
to determine differences. The ‘linkET” package in R language was used for visualiz-
ing correlation heatmaps, and Spearman correlation analysis was applied for correlation
analysis. SPSS 26.0 was utilized for Cox univariate and multivariate analyses [13]. The
predictive efficacy of the nomogram was evaluated through ROC curve, consistency index
(C-index), calibration curve, and decision curve analysis (DCA), followed by internal and
external validation.

3. Results
3.1. Comparison of Characteristics Among Adult Glioma Patients with Different WHO Grades

From January 2019 to December 2023, this study collected clinical data from 302 glioma
patients who underwent surgical resection. After excluding 45 cases that did not meet the
inclusion criteria (4 patients aged < 18 years old, 8 ependymomas, 4 subependymomas,
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9 patients with other concomitant tumors, and 20 patients with missing ATRX, p53, IDH1,
or Ki-67 testing results), a total of 257 patients were finally included in the study (Figure 1).

302 glioma patients collected

45 excluded
4 aged<18 years old;

:> 12 with ependymomas/subependymomas;

9 with other concomitant tumors;

20 with missed histopathological test results.

N\

257 adult glioma patients included
46 with WHO grade IT glioma
57 with WHO grade IIT glioma
154 with WHO grade IV glioma

Figure 1. Flowchart of eligible adult patients with primary glioma enrolled in the study.

There were significant differences in age at diagnosis, symptoms, KPS score, and tumor
location among glioma patients with different WHO grades, while no differences were
observed in gender, smoking history, head trauma history, or tumor diameter (Table 1).

Table 1. Comparison of clinical characteristics among adult patients with different WHO grades

of glioma.
n WHO II WHO III WHO IV X2 p Value
Gender
male 143 23 35 85 1.372 0.503
female 114 23 22 69
Age (y)
<60 137 39 38 60 35.130 <0.001
>60 120 7 19 94
Smoking history
yes 86 16 22 48 1.075 0.584
no 171 30 35 106
History of head trauma
yes 20 4 3 13 0.651 0.722
no 237 42 54 141
KPS score
>80 237 46 56 135 11.221 0.004
<80 20 0 1 19
Diameter (cm)
<5 157 32 34 91 1.699 0.428
>5 100 14 23 63
Symptom
intracranial hypertension 100 15 22 63 29.090 <0.001
neurological dysfunction 100 10 22 68
epilepsy 39 16 10 13
mental disorders 8 1 0 7

no obvious symptoms 10 4 3 3
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Table 1. Cont.
n WHO II WHO III WHO IV X2 p Value
Tumor distribution
left side 123 24 27 72 3.695 0.718
right side 97 15 25 57
bilateral 21 4 4 13
middle 16 3 1 12
Tumor location
frontal lobe 101 28 24 49 25.461 0.001
temporal lobe 63 4 11 48
parietooccipital lobe 53 8 8 37
insular lobe 14 0 6 8
others 26 6 8 12
Surgical type
subtotal resection 154 33 30 91 5.371 0.251
partial resection 80 10 23 47
stereotactic biopsy 23 3 4 16
Postoperative chemotherapy
yes 204 32 43 129 5.058 0.080
no 53 14 14 25
Postoperative radiotherapy
yes 185 3 12 57 18.090 <0.001
no 72 43 45 97
ATRX
positive 171 10 26 135 83.536 <0.001
negative 86 36 31 19
IDH1
positive 62 24 17 21 30.038 <0.001
negative 195 22 40 133
p53
positive 106 29 31 46 21.304 <0.001
negative 151 17 26 108
Kie7
weakly positive 84 42 32 10 134.111 <0.001
Strong positive 173 4 25 144

3.2. Treatment Plan

The standard treatment for patients with gliomas is maximal surgical resection as
recommended by clinical guidelines, followed by adjuvant radiotherapy and/or adjuvant
chemotherapy with temozolomide (TMZ) [14,15]. In this study, 154 patients (59.9%) under-
went subtotal resection, 80 patients (31.1%) underwent partial resection, and 23 patients
(9.0%) received stereotactic biopsy (Table 1). A total of 204 patients received postoperative
chemotherapy, and 185 patients received postoperative radiotherapy.

3.3. Mutation and Correlation Analysis of Common Immune Markers Across Glioma Grades

In this study, the mutation positive rates of ATRX, IDH1, and p53 expression levels, as
well as the degree of differentiation of Ki-67, varied among glioma patients with different
WHO grades, all with statistical significance (Table 1). Correlation analysis was further
conducted to explore the associations between the expression levels of these immune
markers. As shown in Figure 2, ATRX expression was positively correlated with Ki-67 but
negatively correlated with IDH1 and p53. In addition, a significant negative correlation
was also observed between Ki-67 and IDH1.
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Figure 2. Heatmap of the correlation of common tumor immunomarkers across glioma patients with
different WHO grades.

3.4. Cox Regression Analysis of Prognostic Factors

Univariate Cox regression analysis (Table 2) identified several factors associated with
overall survival (OS) in glioma patients, including age at diagnosis, KPS score, WHO grade,
postoperative adjuvant radiotherapy, and tumor immune markers (ATRX, IDH1, Ki-67,
p53). Variables with statistical significance in the univariate Cox analysis and postoperative
chemotherapy were included in the multivariate Cox analysis. As shown in Figure 3,
postoperative adjuvant chemotherapy was an influencing factor for glioma prognosis,
while P53(—) was no longer a risk factor for poor prognosis in glioma.

Table 2. One-way Cox prognostic analysis of overall survival and progression-free survival in
257 patients with glioma.

0s
HR 95%CI p Value

Gender (male/female) 0.913 0.683-1.220 0.540
Age (<60/>60) 3.502 2.555-4.800 <0.001
Smoking history (no/yes) 0.799 0.585-1.092 0.159
KPS score(<80/>80) 0.114 0.069-0.188 <0.001
Diameter (<5 cm/>5 cm) 1.514 1.129-2.030 0.006
History of head trauma (no/yes) 1.145 0.674-1.944 0.616
WHO grade

WHO II 1* 0*
WHO III 3.477 1.784-6.775 <0.001
WHO IV 14.739 7.995-27.170 <0.001
Postoperative radiotherapy (no/yes) 0.281 0.204-0.388 <0.001
Postoperative chemotherapy (no/yes) 0.739 0.512-1.068 0.107
ATRX (—/+) 11.042 7.083-17.213 <0.001
IDH1 (—/+) 0.221 0.140-0.350 <0.001
P53 (—/+) 0.475 0.349-0.646 <0.001
Ki67 (weak+/strong+) 6.611 4.402-9.929 <0.001

* Control group.
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Figure 3. Forest plot of multifactorial Cox regression in 257 patients with glioma. *: control group.
Asterisks indicate the level of statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Construction and Validation of a Nomogram Prognostic Model
3.5.1. Construction of the Nomogram Prognostic Model

A total of 257 patients were randomly divided into a training set and a validation set
at a 6:4 ratio. Meanwhile, 100 patients with balanced baseline characteristics were selected
from the CGGA database as an external validation set. There were no significant differences
in gender, age, WHO grade, or postoperative chemotherapy, or in the expression of ATRX,
IDH1 and Ki-67, among the three groups (p > 0.05). However, a significant difference
was observed in the proportion of patients receiving postoperative radiotherapy among
the three groups (p < 0.05), with the external validation set showing a notably higher
radiotherapy rate (89%) compared to the training and internal validation sets (Table 3).

Table 3. Comparison of clinical characteristics between training set, validation set, and CGGA external
validation set.

Training Set Validation Set CGGA 2
(n = 154) (n = 103) (n = 100) X b
Gender
male 91 (59.1%) 50 (48.5%) 61 (61.0%) 3.898 0.142
female 63 (40.9%) 53 (51.1%) 39 (39.0%)
Age (year)
<60 78 (50.6%) 56 (54.4%) 52 (52.0%) 0.343 0.843
>60 76 (49.4%) 47 (45.6%) 48 (48.0%)
WHO grade
WHO II 28 (18.2%) 19 (18.4%) 18 (18.0%) 1.038 0.904
WHO III 31 (20.1%) 26 (25.2%) 22 (22.0%)
WHO IV 95 (61.7%) 58 (56.3%) 60 (60.0%)
Postoperative radiotherapy
yes 112 (72.7%) 75 (72.8%) 89 (89.0%) 10.821 0.004
no 42 (27.3%) 28 (27.2%) 11 (11.0%)
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Table 3. Cont.
Training Set Validation Set CGGA 2
(n = 154) (n = 103) (n = 100) X b
Postoperative chemotherapy
yes 121 (78.6%) 77 (74.8%) 69 (69.0%) 2.946 0.229
no 33 (21.4%) 26 (25.2%) 31 (31.0%)
ATRX
negative 45 (29.2%) 38 (36.9%) 37 (37.0%) 2.342 0.310
positive 109 (70.8%) 65 (63.1%) 63 (63.0%)
IDH1
negative 113 (73.4%) 86 (71.8%) 70 (70.0%) 0.344 0.842
positive 41 (26.6%) 171 (28.2%) 30 (30.0%)
Ki-67
weak+ 50 (32.5%) 35 (34.0%) 30 (30.0%) 0.376 0.829
strong+ 104 (67.5%) 68 (66.0%) 70 (70.0%)

Points

AGE

WHO

RAD

CHE

IDH1

ATRX

Ki67

Total Points

Linear Predictor

A prognostic nomogram for predicting 1-year, 2-year, and 3-year survival rates was
constructed using variables with p < 0.05 identified in multivariate analysis and included in
the CGGA external database (Figure 4). The scoring system for each prognostic factor is as
follows: age > 60 years: 25.1 points; WHO grade III: 43.3 points; WHO grade IV: 86.6 points;
no postoperative radiotherapy: 38.4 points; no postoperative chemotherapy: 29.8 points;
IDH1 negative: 48.2 points; ATRX (+): 100 points; Ki-67 (strong+): 67.0 points. The total
score was calculated by summing the points of all applicable factors. A higher total score
correlates with a worse prognosis (i.e., lower survival probability at 1, 2, and 3 years).

0 10 20 30 40 50 60 70 80 90 100

1 3
2 0 4

1 0

1 J 0

1 ' 1

: )
0 2

1

(; 5|0 1(;0 1 5’0 2('JO 2.’;0 360 35’0 460 45;0
s 4 3 2 0 1 2 3

1-year Survival Probability ’ r ——TT

2-year Survival Probability
3-year Survival Probability

0.9 0.8 0.7 0.60.50.40.30.2

0.9 0.8 0.7 0.60.50.40.30.2 0.1
0.9 0.8 0.7 0.60.50.40.30.2 0.1

Figure 4. Columnar plot of prognostic OS in patients with gliomas of the brain. Note: AGE: 1 means
<60 years old, 2 means > 60 years old; WHO 2, 3, and 4 are WHO grades II, III, and IV respectively;
RAD: 1 represents patients who received postoperative radiotherapy, 0 represents patients who
did not receive postoperative radiotherapy; CHE: 1 represents patients who received postoperative
chemotherapy, and 0 represents patients who did not receive postoperative chemotherapy; IDH1: 0 is
negative, 1 is positive; ATRX: 0 is negative, 1 is positive; Ki67: 0 is weak positive, 1 is strong positive.

3.5.2. Validation and Evaluation of the Nomogram Prognostic Model

According to the calculation results of the regression equation, ROC curves were
drawn using the data of the training set, validation set, and CGGA external validation set,
respectively. The AUC values of 1-year, 2-year, and 3-year OS were all > 0.75 across the
three datasets, indicating the good discrimination ability of the model for OS (Figure 5). In
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addition, the C-index of the training set was 0.861, further supporting the high predictive
accuracy of the model.
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Figure 5. Column line graphs predict ROC curves for 1-, 2-, and 3-year OS in glioma patients. (A) ROC
curve of training set; (B) ROC curve of validation set; (C) ROC curve of external validation set.

Calibration plots were drawn using the data from the training set, validation set, and
CGGA external validation set, respectively. The slopes of the calibration curves in the three
cohorts were all close to 1, indicating that the predicted 1-year, 2-year, and 3-year OS rates
of the model for glioma patients were basically consistent with the actual values (Figure 6).
The calibration ability of the prediction model was evaluated by Hosmer-Lemeshow test.
The results showed that x? = 5.980 and p = 0.650 for the model, suggesting that there was
no statistical difference between the predicted and observed OS rates, indicating good
calibration for the prediction model.

DCAs were constructed using data from the training set, validation set, and CGGA
external validation set (Figure 7). The 1-3-year OS prediction model for glioma patients de-
veloped in this study had high net benefit within specific risk threshold ranges. Compared
with non-intervention strategies and other comprehensive strategies, the model showed
superior clinical utility, suggesting that it can effectively assist in individualized decision-
making and provide valuable guidance for clinicians and patients managing glioma.
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4. Discussion

The fifth edition of the WHO classification of Central Nervous System Tumors (2021)
proposed an integrated diagnostic model, clarifying the core status of molecular mark-
ers in the diagnosis, subtyping, and prognostic assessment of gliomas. By combining
histopathological and molecular features, a more accurate diagnostic classification has been
established [16]. Synhaeve et al. [17] demonstrated the value of next-generation sequenc-
ing (NGS) in identifying glioma subtypes with different prognostic outcomes. Among
patients histologically diagnosed as WHO grade II astrocytoma, 16.9% were molecularly
diagnosed as WHO grade IV glioblastoma. Although significant progress has been made in
the application of molecular characteristics in glioma classification, there still remain some
challenges [18]. The survival rate of glioma patients has not been significantly improved in
the molecular era, and the high cost of NGS has limited the widespread implementation of
large-panel gene testing for Chinese glioma patients in routine post-surgical practice. In
this context, IHC detection methods, due to their high efficiency and accessibility, remain
an indispensable molecular typing tool in clinical practice [3].

The regulation of the glioma immune microenvironment involves the synergistic
action of multi-omics biomarkers. As early as 2009, Yan et al. discovered that patients
with IDH-mutated gliomas had significantly better prognoses. IDH mutations are more
common in low-grade gliomas and secondary glioblastomas [19]. Multiple studies on IDH
inhibitors for the treatment of gliomas have been conducted [20,21], which are expected
to change the treatment regimen for IDH-mutated gliomas. In adult primary gliomas,
IDH-mutant gliomas are often accompanied by ATRX mutations [22]. Olar et al. [23]
showed that patients with co-mutations had higher survival rates. Hu et al. [24] found
that ATRX mutations activate the BRD-dependent immunosuppressive transcriptome and
immune escape mechanisms in IDH1 R132H-mutated astrocytoma cells. Additionally,
Murnyak et al. [25] found that gliomas with IDH1 mutations are often accompanied by
TP53 mutations. The TP53 gene plays a key role in processes such as cell cycle regulation,
DNA damage repair, and apoptosis [26]. However, the relationship between TP53 gene
mutation status and survival outcomes remains inconclusive. Some studies [27,28] have
reported that patients with TP53 mutations have better survival rates, while others have
not found such a correlation [29]. Xie et al. [6] found that ATRX mutations often coexist
with IDH1 and TP53 mutations in low-grade gliomas, raising the possibility of interactions
among these genes and ferredoxin reductase (FDXR). Nonetheless, the precise synergistic
mechanisms underlying ATRX, IDH1, and TP53 mutations remain poorly understood and
warrant further investigation at the molecular level.

Hu et al. [11] demonstrated a negative correlation between IDH1 and Ki-67, a finding
corroborated by our analysis of commonly used glioma biomarkers. The expression level
of Ki-67 reflects the proliferative activity of tumor cells [7], and tumor cells with high
proliferative activity are more likely to lead to tumors’ recurrence and metastasis [30].
Several studies [31,32] have shown that glioma patients with weak positive Ki-67 have a
longer OS. Therefore, by detecting the positive expression rate of Ki-67 in tumor tissues,
the proliferative status of tumor cells can be evaluated.

Nevertheless, the prognosis of gliomas is not determined by a single immune marker
alone. Factors such as patient age, KPS score, tumor size and location, extent of surgical
resection, postoperative treatment regimen, and expression of immune markers interact
with each other in a complex manner to determine the patient’s prognosis [33,34].

Gong [35] et al. developed a homologous recombination deficiency (HRD) score-based
prognostic model for glioma, which identified seven signature genes via machine learning
and demonstrated superior predictive performance across multiple cohorts. The study also
revealed correlations between HRD scores, genomic instability, and immune infiltration
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patterns, providing potential insights for immunotherapy and personalized treatment
strategies. Huang et al. [36] developed a fusion prognostic model combining radiomics
and clinical factors, which demonstrated optimal performance in predicting survival for
patients with diffuse glioma. Based on this model, they constructed an accessible ‘Prognosis
Calculator for Diffuse Glioma’ to assist clinical decision-making.

In this study, a nomogram model was developed by integrating tumor immune
markers (ATRX, IDH1, Ki-67) and clinical characteristics (age, WHO grade, postoperative
radiotherapy and chemotherapy). This model enables a comprehensive assessment of the
prognosis in adult patients with primary glioma. Compared with traditional evaluation
methods, the nomogram model considers the interaction of multiple factors and provides
more accurate and individualized prognostic information. ROC curves were drawn using
the data from the training set, validation set, and CGGA external validation set, respectively,
with all AUC values greater than 0.75, indicating robust discriminatory performance.
Calibration curves for the training set, validation set, and CGGA external validation set
were plotted, and the slopes of the calibration curves were all close to 1, demonstrating
strong concordance between predicted and observed outcomes. Furthermore, the DCA
curve confirmed the clinical utility of the nomogram, suggesting its potential value in
guiding treatment decisions and facilitating shared decision-making between clinicians
and patients.

This study still has some limitations. First, the relatively small sample size may affect
the accuracy and generalizability of the nomogram. Although strict inclusion and exclusion
criteria were adopted in the model’s construction, potential selection bias cannot be entirely
excluded. Second, external validation was limited to the CGGA database. Although the
validation results show that the model has a good predictive performance, prospective,
multi-center clinical studies are needed to further confirm its robustness. Third, due to data
constraints, we were unable to incorporate additional tumor biomarkers (such as MGMT
promoter methylation, TERT, etc.). We plan to include these in future studies. Fourth,
there was a significant difference in the rate of radiotherapy’s administration between the
development and external validation cohorts. This difference represents a potential source
of confounding, as radiotherapy is a key determinant of patient outcomes. Unfortunately,
due to the lack of detailed data on the specific indications for radiotherapy (e.g., margin
status, extracapsular extension) in the external validation cohort, we were unable to adjust
for this critical variable. Although our model maintained its performance in the validation
set, we cannot fully rule out that the difference in treatment rates may have influenced
the results.

Future research could identify additional prognostic biomarkers for adult primary
gliomas. While the integration of pathological factors and molecular characteristics remains
the optimal reference for diagnosis and treatment at present, the advent of IDH inhibitors
has markedly improved survival outcomes in patients with IDH-mutant gliomas, establish-
ing a new standard of care for this subset of tumors [20,21]. Future studies should prioritize
validating and refining our prognostic model within this evolving therapeutic context, par-
ticularly to assess its performance in predicting treatment response and long-term survival
among patients receiving IDH-targeted therapy. Furthermore, investigating the interaction
between model-derived risk strata and the efficacy of IDH inhibitors may offer valuable
insights for personalized treatment strategies and patient stratification in clinical trials.

5. Conclusions

This nomogram model incorporating clinical factors (age, WHO grade), treatment
(radiotherapy, chemotherapy), and tumor markers (ATRX, IDH1, Ki-67) has a good predic-
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tive efficacy and may serve as a practical and effective alternative to molecular testing for
prediction of survival in adult patients with primary glioma.
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