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Glioblastoma (GB) and brain metastases (BM) from peripheral tumors account for most cases of tumors
in the central nervous system (CNS) while also being the deadliest. From a structural point of view,
malignant brain tumors are classically characterized by hypercellularity of glioma and vascular endo-
thelial cells. Given these atypical histologic features, GB and BM have long been considered as “foreign”
entities with few to no connections to the brain parenchyma. The identification of intricate connections
established between GB cells and the brain parenchyma paired with the ability of peripheral metastatic
cells to form functional synapses with neurons challenged the concept of brain tumors disconnected
from the CNS. Tumor cell integration to the CNS alters brain functionality in patients and accelerates
cancer progression. Next-generation precision medicine should therefore attempt to disconnect brain
cancer cells from the brain. This review encompasses recent discoveries on the mechanisms underlying
these relationships and discusses the impact of these connections on tumor progression. It also
summarizes the therapeutic opportunities of interrupting the dialogue between healthy and neoplastic
brains. (Am J Pathol 2025, -: 1e16; https://doi.org/10.1016/j.ajpath.2025.04.013)
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Cancers of the central nervous system (CNS) strike blindly
and are frequently associated with a very dismal prognosis.
Primary brain tumors (malignant and nonmalignant) affect
women more than men (26.31 vs 21.09 per 100,000).
However, malignant tumors are more common in men (56%
of the cases). Primary brain tumors are also the leading
cause of childhood cancererelated deaths.1 Glioblastoma
(GB) is the most aggressive primary brain cancer, ac-
counting for 14.5% of all primary brain tumors alone. Brain
metastases (BM) are even more frequent, however, as they
occur in about 40% of patients with metastatic cancer and
represent up to 80% of all cases of intracranial tumors.2

Current therapeutic protocol is decided based on the
histopathologic diagnosis and is adjusted according to the
tumor size, location in the brain, and patient’s age and
health.3 For GB, the conventional approach recommends
surgical resection followed by antimitotic treatments via
large-field or locoregional radiotherapy supplemented by
cycles of the DNA-damaging drug temozolomide.4 BM
occur at an advanced stage of primary cancer progression,
stigative Pathology. Published by Elsevier Inc
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and surgical craniotomy increases the burden of weaker
patients. Clinicians can opt for noninvasive, stereotactic
gamma-knife intervention, consisting of narrow-beam radi-
ation of the patient’s head targeted to the identified meta-
static sites.2 However, progression of BM is hard to impede
and, in the absence of effective treatments, shortly leads to
death.

Nomenclature indicates that GB primarily originates from
a glial lineage. However, histologic features of GB do not
consistently recapitulate those observed for healthy glial cell
networks. GBs often feature hypercellularity and a highly
active metabolism leading to hypoxic/necrotic areas. This
chronic oxygen deficit triggers uncontrolled angiogenic
growth.5 The resulting enlarged, leaky, fibrotic, and
.
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hemorrhagic tumor blood vessels do not share the proper
structure of functional brain blood vessels. In addition to
engineering de novo tumor blood vessels, GB cells use
preexisting brain endothelial capillaries as a scaffold for
invasion.6 This enables a rapid tumor invasion to distant
brain areas, faster than with other cellular scaffolds such as
white matter tracts.7

At the premises of cancer neuroscience, it was suspected
that neoplastic cells used molecular and physical features
from distinct cerebral areas (eg, the corpus callosum) to
invade and grow. Tumor cell interactions were mainly based
on the composition of the microenvironment but not
necessarily local brain cell populations.7 More recent dis-
coveries changed this preconception of a passive tumor
growth devoid of active connection to the brain paren-
chyma. For instance, GB8 and BM9 cells can form their own
electrically active glutamatergic synapses with neurons
(Table 18e20,21e40,41e61). These provocative findings,
showing that cancer cells from very different lineages can
“speak” the same language as native neurons, also revealed
how these neoplastic synapses accelerated progression and
resistance to therapies.8,9 These first discoveries on the
interplay between brain tumors and CNS were made less
than a decade ago. In 2025, two ongoing clinical trials are
attempting to pharmacologically sever brain tumors from
neuronal and astrocyte networks. Using neuroscientific
tools, these efforts are potentially paving the way for next-
generation precision medicine targeting GB and BM.

This review discusses the recent advances in the studies
of the brain tumoreCNS interactome, including a guide for
paracrine signaling with soluble factors and physical con-
nections between the neoplastic cells and the brain paren-
chyma. This article focuses on the involvement of astrocytes
and neurons in the context of GB and BM. Several excellent
reviews focusing on other stromal cells such as brain
microvascular endothelial cells5 or microglial cells62 are
available elsewhere.
F1�

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
Preface on Experimental Studies and Clinical
Translatability

Experimental tools such as patient avatars (human cells
implanted in immunocompromised laboratory animals) are
classically used for preclinical brain tumor research. By
numbers, these studies are the bulk of the literature gathered
in this review. However, when dissecting the interactions
between malignant and CNS cells, responsible models
replacing mammalian organisms have emerged as a robust
alternative. The fruit fly Drosophila melanogaster has been
a central contributor to developmental biology, neurosci-
ence, and brain cancer biology. Gene editing by either
fusion (FGFR3-TACC) or constitutively active mutation
(EGFR-PI3K ) in D. melanogaster63 induced “fly gliomas”
sharing histologic features with either lower (FGFR3-
TACC) or higher (EGFR-PI3K ) grade human tumors. For
2
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explorative biology, RNA interference screens in flies64

pinpointed genes responsible for fly egg cell polarization
and migration. In patient transcriptomics databases, ho-
mologous genes exhibited matching roles during fly devel-
opment and GB progression.
When considering cancer neuroscience studies, the D.

melanogaster model facilitates in situ and in vivo glioma
studies at the cellular resolution. For instance, the influence
of GB cells on neuronal synapses density65 or GB neoplastic
synapses formation66 has been studied in the fly. Fascinating
chronotherapy studies in flies unveiled how glioma pro-
gression and associated degeneration of pacemaker neurons
modify the circadian behavior of Drosophila.66 Forced re-
synchronization of the light/dark phases significantly
improved the outcome of tumor-bearing flies, providing new
concepts to be explored for human therapy. Lastly, even
smaller organisms such as the nematode worm Caeno-
rhabditis elegans have been used for glioma therapy drug
screens, further illustrating the value of alternative live
models for brain tumor preclinical studies.67
Tumor-Astrocyte Dialogue

Clinical observations of “bizarre astrocytes” within and sur-
rounding neuropathologic lesions such as GB, amyotrophic
lateral sclerosis, or gliosarcomas were first reported in the
1970s.68,69 The astrocytopathy was especially correlated with
aggressive chemotherapeutic and radiotherapeutic regimens
in patients.70 In the early 2000s, postmortem studies sug-
gested that reactive astrocytes would provide a physical and
chemical shield to brain tumors against immune system cell
infiltration.71 The exact mechanism behind this shielding was
first identified in 2019, when Heiland et al72 dissected the
secretome of tumor-associated astrocytes. They identified
several anti-inflammatory cytokines produced by the inter-
action between reactive astrocytes and microglia, including
transforming growth factor-b, granulocyte colony-
stimulating factor, and IL-10. Since then, accumulating evi-
dence has shown how astrocytes can initially hamper the
growth of brain neoplasms. Then, through reprogramming
initiated by the tumor microenvironment, astrocytes ulti-
mately exacerbate the tumor progression (Figure 1 ½). Recent
attempts at summarizing reactive astrocyte diversity have
shed light on the complex relationships between astrocyte
identity and anatomical location, age, sex,73 and pathologic
microenvironments.74
Soluble Factors

Epithelial-to-mesenchymal transitionelike processes are
observed both in GB and astrocytes, particularly at the
tumor edge, induced by crosstalk between reactive astro-
cytes and GB cells10e18 (Figure 1A, Table 1). This tran-
sition, in addition to specific paracrine signaling,
contributes to the aggressive progression of GB.
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Interactome Used in the Crosstalk between Malignant Brain Tumor Cells (Primary and Brain Metastases), Astrocytes, and Neurons

Element of language Source
Paracrine or physical
connexion Receiver

Pro- or antitumoral
biological activity Organism Model Therapeutic application Reference

AMPA GB Microtubes Neurons Migration, proliferation Hu PDX, patient Isoflurane, perampanel 8
GluN2B/NMDAR BrBM Synapses Brain colonization Hu PDX, patient Q23NA 9
CXCL5 Astrocytes Ligand GB MES transition,

migration,
proliferation

Ms, Hu Co-culture,
allograft

NA 10

POSTN, SRGN Reactivity LGG/GB Proliferation, increased
“astrocyte signature
score”

Hu In silico, co-
culture, PDX,
patient

NA 11,12

CHI3L1/IL-13RA2 Ligand GB Migration, proliferation Hu Co-culture, patient NA 13
MMP14/2 Tumor ECM Hu Co-culture NA 14
IL-6 Ligand
MGMT mRNA,

miR-19a
EVs Resistance to TMZ,

invasiveness
Hu In vitro, PDX NA Reviewed

in 15
miR-1238 GB Astrocytes Invasiveness
IL-1b Astrocytes Ligand GB MES transition, therapy

resistance
Hu Patient Potentiate

immunotherapies
16

TNF-a Ligand
STAT3 Tumor ECM
NF-kB Ligand
EMT Reactivity MES transition, tumor

progression
Ms, Hu In silico, PDX,

patient
NA Reviewed

in 17,18GB EVs Astrocytes
Ion channels and

transporters
Astrocytes Kþ, Cle, Ca2þ, Naþ GB Invasiveness,

proliferation
Hu In silico, in vitro,

PDX
Ion channels blockers

(psalmotoxin-1,
benzamil, ouabin,
digoxin, cholotoxin)

19,20

Genetic material
transfer

GB EVs Astrocytes Tumor growth and
maintenance

Ms, Hu PDX, patient NA 21,22
Cell fusion Neurons

Hyperexcitability Astrocytes Synaptogenesis GB Increased GB
invasiveness and
connectivity, seizures

Ms, Hu In vitro, PDX,
patient

NA 23

Cx43 Gap Junction Resistance to TMZ and
VCR

Ms, Hu PDX Bentamapimod
(AS602801, p-JNK
inhibitor)

24e27

Hypoxia GB Tumor ECM Astrocytes Reactive astrogliosis,
tumor progression

Hu PDX Clinical imaging
(Cu-ATSM probes)

28

WT1 Reactive astrogliosis Hu Patient NA 29
Experimental genetic

manipulation
Neurons GB Neoplastic

dedifferentiation
Ms In vitro, PDX NA 30

Astrocytes
Brain injury Reactivity Tumorigenesis? Hu Patient NA 31e34
Brain irradiation TG2 Tumorigenesis, MES

transistion, tumor
progression

In vitro, PDX,
patient

31,35e37

GAP43 Mitochondria
transfer

GB proliferation Rt, Ms, Hu Co-culture, PDX NA 38

Glutamate GB Tumor microtubes Neurons Invasiveness Ms, Hu Co-culture, PDX,
patient

Isoflurane, perampanel 39

NGLN3 Neurons Synapses GB Progression Ms, Hu Co-culture, PDX,
patient

ADAM10 inhibitor 40,41

Membrane
depolarization

Synapses, gap
junctions

OPC-like
glioma

Tumor cell proliferation,
patient brain
hyperexcitability

Co-culture, PDX,
patients

Meclofanamate,
perampanel

42

TSP-1 GB Ligand Neurons GB proliferation Ms, Hu Co-culture, PDX,
patient

Gabapentin 43

TTYH1 Neurites, synapses Axon outgrowth, tumor
invasion

Hu PDX, patient NA 44

CA11/CA10 Neurons Ligand GB Decreased tumor growth Hu PDX, patient Prognosis marker 45
SOX10 White matter Pre-oligodendrocyte

differenciation
Ms, Hu Co-culture, PDX NA 46

Electrical activity Synapses Epileptiform neuronal
hyperexcitability

Rt Microelectrode
arrays, ex vivo

NA 47

ACh/CHRM3 GB connectivity and
invasion

Ms, Hu Co-culture, PDX,
patient

shRNAs, perampanel 48

GABA receptors Neurotransmitter LGG Decreased tumor
proliferation epileptic
discharge

Hu Patient Bumetanide,
sulfasalazine, valproic
acid

49

DMG/DIPG Tumor progression Ms, Hu In vitro, PDX NA 50
SEMA4F Glioma Tumor ECM Neurons Tumor progression and

infiltration
Ms PDX NA 51

(table continues)
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Table 1 (continued )

Element of language Source
Paracrine or physical
connexion Receiver

Pro- or antitumoral
biological activity Organism Model Therapeutic application Reference

SCF/c-Kit Neurons Ligand GB Tumor angiogenesis Ms, Hu Co-culture, PDX,
patient

Imatinib 52

NLGN3 Ligand OPG Tumor formation Ms NF1-mutant mice Light deprivation,
ADAM10 inhibitor

53

BDNF/NTRK2 Synapses DIPG Glioma synaptic
integration and
plasticity

Ms, Hu Co-culture, PDX Entrectinib 54

tGLI1 BrBMQ24 ? Astrocytes Increased metastatic
potential

Ms, Hu Co-culture, PDX NA 55

proNGF PrBM Axonogenesis Neuronal cell
lines

Metastatic dissemination Hu Co-culture proNGF
immunoneutralization

56

MIF, IL-8, PAI-1 LuBM Ligand Astrocytes Astrogliosis Ms, Hu Co-culture, PDX NA 57
IL-6, TNF-a, IL-1b Astrocytes Ligand LuBM Proliferation Ms, Hu Co-culture, PDX NA 57
MMP2/9 Tumor ECM Lu/BrBM MMPs mediated invasion Rt, Ms, Hu Co-culture, PDX ONO-4817, marimastat,

batimastat, MMP2,
MMP3, and MMP9
immunoneutralization

58

Ach Neurons Synapses LuBM Metastatic progression Hu, Ms Co-culture, PDX Carbachol, tetrodotoxin 59
IL-23 Astrocytes Ligand MelBM Metastatic dissemination Hu Co-culture, patient NA 60
CXCL10 Ligand Migration, metastasis Hu Co-culture, PDX CXCL10 Ab 61

Astrocytes (continuous lines in the Source column), neurons (dotted lines), and neoplastic cells (double line) interact through paracrine signals or physical
contacts (bold). For each element of language between two cell types, pro-tumoral (underlined) or antitumoral (italics) functions have been characterized in
the associated studies.
Ab Q25, antibody; Ach, acetylcholine; ADAM10, a disintegrin and metalloproteinase domain-containing protein 10; AMPA, a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid; BDNF, brain-derived neurotrophic factor; BrBM, breast cancer brain metastases; c-KIT, tyrosine-protein kinase KIT; CA10/11, car-
bonic anhydrase-related protein 10/11; CHI3L1, chitinase-3-like protein 1; CHRM3, M3 muscarinic acetylcholine receptor; Cu-ATSM, diacetylbis(N(4)-meth-
ylthiosemicarbazonato) copper(II); Cx43, connexin 43/gap junction alpha-1 protein; DIPG, diffuse intrapontine glioma; DMG, diffuse midline glioma; ECM,
extracellular matrix; EMT, epithelial-to-mesenchymal transition; EVs, extracellular vesicles; GAP43, growth-associated protein 43; GB, glioblastoma; GluN2B/
NMDAR, GluN2B N-methyl-D-aspartate receptor; Hu, human; LuBM Q26, lung cancer brain metastases; MelBM, melanoma brain metastases; MES, mesenchymal;
MGMT Q27, O-methylguanine-DNA methyltransferase; MIF, macrophage migration inhibitory factor; MMP2/9/14, matrix metalloproteinase-2/-9/-14; Ms, mouse;
NLGN3, neuroligin-3; NF1, gene encoding the neurofibromin protein; NTRK2, neurotrophic receptor tyrosine kinase 2; OPC, oligodendrocyte precursor cell; OPG,
optic pathway glioma; PAI-1, plasminogen activator inhibitor-1; PDX, patient-derived xenograft; p-JNK, phosphorylated Janus kinase; POSTN, periostin; PrBM,
prostate cancer brain metastases; proNGF, nerve growth factor precursor; Rt, rat; SCF, stem cell factor; SEMA4F, semaphorin-4F; SOX10, transcription factor
SOX10; SRGN, serglycin; TG2, transglutaminase 2; tGLI1, truncated glioma-associated oncogene homolog 1; TMZ, temozolomide; TNF-a, tumor necrosis factor
alpha; TSP-1, thrombospondin 1; TTYH1, tweety family member 1; VCR, vincristine; WT1, Wilms tumor protein.
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Experiments of co-culturing astrocytes and GB cells
revealed a transition to a mesenchymal state of the tumor
cells, associated with accelerated progression and poor
survival outcomes in preclinical models.10 Interestingly,
evidence of GBeastrocyte paracrine signaling can be
detected in meta-analyses of clinical samples with high
astrocyte signature score from The Cancer Genome
Atlas.11 In this study, authors identified GB overexpression
of periostin (POSTN) and serglycin (SRGN), two secreted
factors mediating astrocytic recruitment and activation
(Figure 1A). In addition, periostin has been characterized
as a good biomarker for poor outcome in patients.12

Secreted by tumor-associated astrocytes, chitinase 3-like
1 (CHI3L1) binds to IL-13 receptor alpha 2 (IL-13Ra2)
on the tumor cell surface. Activation of this
CHI3L1eIL13Ra2 axis initiates the downstream mitogen-
activated protein kinase and protein kinase B signaling
pathways, consequently promoting GB cell proliferation.13

More globally, tumor-associated astrocytes secrete a range
of factors known to accelerate tumor growth and stimulate
GB cell invasion and extracellular matrix remodeling
(Figure 1). For instance, human astrocytes secrete IL-6,
which in turn up-regulate the expression of matrix
4
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metalloproteinase-14 (MMP14) in glioma cells. The IL-
6eMMP14 axis plays a critical role in promoting glioma
migration and invasion14 (Figure 1B).
In vitro studies underscore a significant increase in the

migratory and invasive capabilities of glioma cells when co-
cultured with normal human astrocytes. Elevated expression
of IL-6 and MMP14 are strongly associated with reduced
survival rates, particularly in high-grade gliomas.15 The
mesenchymal state in GB reciprocally induces a reactive
state in astrocytes and vice versa. This transition fosters
therapy resistance, with IL-1b released by reactive astro-
cytes emerging as a key regulator in orchestrating a gradual
mesenchymal transition. In addition, glioma-initiating cells
undergo a transition to a reactive state exhibiting
mesenchymal-like features and gene expression profiles
akin to reactive astrocytes.16 To potentiate the release of
these astrocyte-soluble factors in a paracrine loop manner,
GB cells secrete transforming growth factor-b, fibroblast
growth factor, epidermal growth factor, MMPs, and IL-6
(Figure 1). These secreted molecules from GB cells fuel
astrogliosis, albeit with potential variations compared with
the epithelial-to-mesenchymal transition as described for
epithelial tumors16e18 (Figure 1A).
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Brain Q20tumoreastrocyte crosstalk modulating cancer progression. A: Astrocyte (blue) communication with glioblastoma (GB) cells in the tumor
core (orange) includes paracrine signaling through chemokines, growth factors, or extracellular vesicles (EVs; purple), and physical interactions via gap
junctions. Tumor-associated astrocytosis ignites GB progression via the release of interleukins and growth factors promoting tumor cell proliferation in the
tumor core. For instance, astrocytic chemokines such as the monocyte chemoattractant protein-4 (MCP4), CXCL5, or the glial-derived neurotrophic factor
(GDNF) have been shown to coordinate pro-invasive programs in GB cells at the leading edge. In turn, GB cells sustain astrocytosis by releasing, for example,
tumor EVs containing reprogramming material such as long noncoding RNA (lncRNA) and miRNAs. In addition, GB microenvironment composition contributes
to astrocyte reactivity through factors such as the Wilms tumor protein (WT1). Physical connections between GB cells and astrocytes through gap junctions
enable direct exchange of biological material, including miRNA. Through these connexin 43 (Cx43)-mediated connections, reprogrammed tumor astrocytes
provide shielding from therapies such as vincristine and temozolomide (bottom left insert). Naive/nonreactive astrocytes naturally release interleukins and
polyunsaturated fatty acids (PUFAs), which have been shown to attract and support the extravasation of metastatic melanoma cells (dark brown) to the brain
parenchyma. Similarly to GB cells, breast cancer brain metastatic cells (dark brown) are releasing EVs containing miRNAs (miR-1290), enabling remote
reprogramming of astrocytes into tumor-supporting cells. B: The tumor core microenvironment fortifies epithelial to mesenchymal transition (EMT) in both
astrocytic and tumor cell populations. Tumor core crosstalk between astrocytes and GB cells promoting astrocytic EMT include tumor sourced factors (orange)
such the transforming growth factor beta (TGF-b), fibroblast growth factors (FGFs), epidermal growth factor (EGF), matrix metalloproteinases (MMPs) and IL-6.
Similarly, astrocyte-originating molecules (blue) strengthen mesenchymal (MES)-like phenotypes in GB cells. Those include the connective tissue growth factor
(CTGF), insulin-like growth factors (IGFs), stromal-derived growth factor-1 (SDF-1/CxCL12), MMPs, TGF-b, vascular endothelial growth factor B (VEGF), FGF, and
IL-6. Astrocyte-tumor paracrine signaling functions as a loop, overcharging cancer aggressiveness. BM, brain metastases; HMGB1, high mobility group box 1;
JNK, Janus kinase; POSTN Q21, periostin; SRGN, serglycin.
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Interestingly, in addition to classical soluble factors and
proteins, ion channels and ion transporters play a pivotal
role in mediating communication between reactive astro-
cytes and GB cells. This interplay enhances tumor pro-
gression, metastasis, and tumorigenesis, while interference
in this mode of communication might hold therapeutic po-
tential. For instance, inhibition of ion channele and ion
transporteremediated crosstalk has shown efficacy in
impairing GB invasion and proliferation. Experimental
combined therapy involving ion channel/ion transporter
inhibitors with the therapy of reference, temozolomide,
exhibited enhanced apoptosis of GB cells in both in vivo and
in vitro settings19,20 (Figure 1B).

Structural Communication

Recent studies have shed light on the critical involvement of
extracellular vesicles (EVs) and gap junctions in mediating
the bidirectional communication between astrocytes and
GB. EVs are used by tumor cells as carriers for RNA, DNA,
receptors, and proteins, including MMP2, MMP9, high
mobility group box 1 (HMGB1), and CD147 (Figure 1B).
The American Journal of Pathology - ajp.amjpathol.org
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When EVs undergo endocytosis by peritumoral stromal
cells, they gradually induce neoplastic transformation of the
microenvironment.

During the early stages of the tumor growth, astrocytes
shelter the brain parenchyma from the tumor, notably
through the re-uptake of glutamate to maintain homeostasis,
delaying GB growth and migration.21 As the disease pro-
gresses, brain tumor EVs reprogram astrocytes into tumor-
supporting cells, carrying resistance to temozolomide
treatment. Those EVs have been shown to contain miRNAs,
epidermal growth factor, fibroblast growth factor, IL-19,
and colony-stimulating factor (Figure 1B). Remarkably,
chemoresistance traits such as methylation status are carried
by EVs under the form of O-methylguanine-DNA
methyltransferase (MGMT)mRNA14,15,18,22 (Table 1).

Studies have shown an enrichment of genes promoting
the formation of new neuronal synapses, a process called
synaptogenesis, at the leading edge of gliomas. Synapto-
genesis was associated with a distinct astrocyte population
up-regulating genes controlling synapse formation and was
previously characterized in other neuropathologies such as
epilepsy. As reported by the authors, this synaptogenic
5
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effect is not ubiquitous to all astrocyte populations, further
illustrating the great diversity of normal and tumor-
supporting astrocytes.23

Gap junctions and physical contact between astrocytes
and GB cells have been shown to contribute to chemo-
resistance. This can be directly quantified from increased
temozolomide-induced apoptosis in tumor cells expanded in
monocultures compared with astrocyte tumor cell co-cul-
tures.37 This chemoresistance is mediated by GBeastrocyte
cellecell contacts and the gap junction protein connexin 43
(Cx43)24e27 (Figure 1B and Table 1). Gap junctions be-
tween GB and astrocytes promote tumor progression and
chemoresistance, as well as increased Cx43 levels in pa-
tients, correlating with poorer prognosis. Experimental
knockdown of astrocytic Cx43 reduced GB cell invasion
in vitro and ex vivo, highlighting the contribution of astro-
cytes to the disease progression.25,26

Gap junction communication between GB and astrocytes
can be pharmacologically inhibited by bentamapimod
(AS602801, an experimental phosphorylated Janus kinase
inhibitor), sensitizing GB to temozolomide and vincristine
treatments25,26 (Table 1). Bentamapimod down-regulates
expression of Cx43, potentially offering a strategy to
overcome Cx43-mediated treatment resistance in GB25

(Figure 1B). Interestingly, bentamapimod also interrupted
gap junction communication between lung cancer cells and
astrocytes27 and was previously clinically assessed in
humans against endometriosis progression (under the US
Clinical Trial identifier NCT01630252), suggesting its po-
tential for treatment of brain tumors.

Unfortunately, there is currently no reliable method to
segregate “healthy” reactive astrocytes from neoplastic as-
trocytes, although several studies highlighted the potential
of distinct astrogliosis markers. In an earlier study, hypoxia,
a prevalent feature in highly aggressive GB necessitating the
development of diagnostic probes for clinical applications,
was investigated. Imaging probes such as radiolabeled
diacethyl-bis(N4-methylthiosemicarbazone) typically accu-
mulate in hypoxic regions of rat gliomas.28 Interestingly, an
additional specific homing of this probe in the reactive
astrogliosis delineating the tumor was identified. Locore-
gional uptake was associated with an up-regulation of
copper transporters by the reactive glia, supporting the use
of such tracers for in situ tumor profiling. Wilms tumor
protein 1 (WT33) encoded by the WT1 gene is another
promising diagnostic candidate to improve astrocyte-based
diagnosis of GB. WT1 has been identified as aberrantly
up-regulated in astrocytic tumor cells but not in the healthy
brain or in nontumor-associated astrogliosis; this offers a
unique opportunity to distinguish normal glia from
neoplastic glia in patient samples.29

Gliomas can be experimentally generated from mature
neurons and astrocyte cells through targeted genetic modi-
fication.30 Modifications of the microenvironment and/or
introduction of exogenous factors during surgical resection
of bulk tumors will exert a genetic stress on stromal cells,
6
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potentially promoting their transformation and contribution
to relapses. Surgical intervention disrupts the tumor micro-
environment, including astrocytic injuries leading to tran-
scriptome and secretome modifications, promoting tumor
proliferation and migration10 (Figure 1B). Reactive astro-
cytosis, which occurs in response to brain parenchymal
injury, results in altered astrocyte functions, affecting ho-
meostasis, neurogenesis, synaptogenesis, axon growth, the
bloodebrain barrier, and blood flow.
GB can be considered a form of brain damage that in-

duces reactive astrocytosis, enhancing tumor growth and
malignancy.31 Two separate reports show that traumatic
brain injury increases the risk of brain tumor formation. A
first report followed up 5000 patients with traumatic brain
injury in Taiwan and compared them with 25,000 randomly
selected enrollees.32 The result after 3 years of follow-up
was a fivefold higher risk for malignancy after traumatic
brain injury (6.28 vs 1.25 per 10,000). A follow-up study
examined Afghanistan and Iraq war veterans with severe,
penetrating, or moderate brain injury.33 These injuries were
associated with increased risk of brain tumor.32,33

However, additional studies challenge the notion that
significant brain injury increases the risk for developing
malignant neoplasms. Analyses of individuals diagnosed
with traumatic brain injury, cerebral ischemic infarction, and
intracerebral hemorrhage revealed no increased risk of
astrocytic neoplasms (eg, anaplastic astrocytomas, GB1) 5
years’ postinjury. Interestingly, a reduced long-term risk of
developing malignant neoplasms in the brain injury group,
compared with the normal population, was observed 20
years after injury.34 Extent of physical trauma might be the
main factor driving tumorigenesis, as mild brain injury was
not associated with increased tumor risk,32,33 explaining the
discrepancies between studies focusing on brain injuries.
Accidental (or therapeutic) irradiation of the brain has been

shown to significantly increase stemness and radioresistance
of gliomas. At the molecular level, irradiated astrocytes up-
regulate transglutaminase 2 (TGM2), accelerating the
mesenchymal transition and aggressiveness of GB.35,36

Moreover, spatial transcriptomics analyses of GB samples
from irradiated patients identified GB cell reprogramming
into an alternative phenotypic cell state. This cell state
exhibited hybrid mesenchymal and astrocytic features with
remarkable vascular co-option ability and radioresistance.37

Mitochondria transfer is a common mechanism in health
and cancer. During neuron axon regeneration and astrocyte
reactivity, mitochondria transit between cells occurs through
intercellular connections facilitated by the growth-
associated protein 43 (GAP43) (Figure 1). Mitochondria
originating from astrocytes have been shown to transfer to
GB cells. Increased mitochondria numbers fortify GB cell
respiration and up-regulate metabolic pathways linked to
proliferation and tumorigenicity. Mitochondrial transfer
from astrocytes to GB cells led to higher tumor cell
dissemination and increased cancer-associated lethality in
preclinical models38 (Table 1).
ajp.amjpathol.org - The American Journal of Pathology
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Decreased connections between tumor cells and astro-
cytes in favor of increased connectivity to neuronal net-
works have been shown to increase GB invasiveness in vivo.
Disconnected from astrocytes, invasive GB cells resemble
neural progenitorelike cells and are sensitive to gluta-
matergic activity driving their migration and colonization.39
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TumoreNeuron Dialogue

The complex relationship between neurons and GB cells has
recently been identified as a key driver for tumor progres-
sion. This section explores various facets of neuronal signals
and their involvement in GB growth, with potential new
candidates for precision medicine. Key molecules promot-
ing synaptogenesis and enhancing tumor
growth30,40e54,75e83 and59 have been summarized in
Figure 2 and Table 1.
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Soluble Factors

Glioma progression in the brain parenchyma takes advan-
tage of neuronal proteins such as neuroligin-3 (NGLN-3).
NGLNs are essential cell adhesion proteins during the for-
mation of neuronal synapses. Synaptic stabilization is ach-
ieved through the interaction between presynaptic neurexins
and postsynaptic NGLNs. NGLN-3 can be shed by dis-
integrin and metalloproteinase domain-containing protein
10 (ADAM10) proteolytic activity, which classically dis-
connects synapses40,41 (Figure 2A and Table 1). In brain
cancer, soluble NGLN-3 binds to glioma cell surface
(Figure 2A), activating focal adhesion kinase and phos-
phatidylinositol 3-kinase/mammalian target of rapamycin.
Intracellular cascade activation induces up-regulation of
NGLN-3 itself, as well as potassium channels classically
expressed by neurons.40,41 Further studies from the same
group revealed physical integration and bidirectional con-
nectivity of GB cells to neuronal networks.42 The extent of
GB integration to the neuronal networks can be detected in
patients and provide readouts of the tumor progression.

Electrocorticography techniques, the contact recording of
electrical potentials at the surface of the exposed cerebral
cortex, have recently been applied to patients with GB.43 In
this study, a significant increase of the high-gamma band
range power, associated with spikes of neuronal activity,
was detected in patients with brain areas infiltrated with GB
cells (Table 1). When dissecting the nature of these elec-
trochemical changes in preclinical models, electrically
active GB cells highly integrated in functionally connected
brain areas (eg, with a synchronous increase in electrical
activity) were found. The central molecule involved in this
integration is the synaptogenic factor thrombospondin-1
(TSP-1) (Figure 2C), which is notably known for its
involvement in neural circuit remodeling of the healthy
brain.43 To disconnect neoplastic synapses in GB, the au-
thors used the TSP-1 inhibitor gabapentin, an anticonvulsant
The American Journal of Pathology - ajp.amjpathol.org
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approved by the US Food and Drug Administration for the
treatment of epileptic seizures. Gabapentin treatment
improved survival compared with control groups in pre-
clinical studies. Additional synaptic markers such as Cx43,
Gap43, and Ttyh1 have been identified as drivers of
neuronal network formation, axon outgrowth, tumor inva-
sion, and therapy resistance (Figure 2C). Similarly to
GBeastrocyte interactions, Cx43 and Gap43 facilitate
interconnection and network formation among glioma cells,
enhancing malignancy and resistance. Increased tumor cell
connectivity further promotes cell invasion, proliferation,
and axonal outgrowth44 (Figure 2C).

Recent developments in neuro-oncology have identified
four emerging fields: electrochemical neuralecancer in-
teractions, paracrine neural interactions, systemic neural in-
teractions, and cancer therapy effects on the nervous
system.75 However, not all neuronal paracrine signaling
promotes GB progression (Figure 2C). For instance, carbonic
anhydrase-related proteins 11 and 10 (CA10/CA11) are
secreted neuronal synaptic proteins that function as neurexin
ligands. These proteins have shown a negative correlation
with glioma growth. Inhibition of CA11 gene expression
resulted in more aggressive tumor growth and reduced sur-
vival. CA10/CA11 secretion is regulated by the protein kinase
B signaling pathway,45 and, in neuron GB co-cultures, CA10
inhibits glioma growth. Similarly, preclinical assessment for
combination of glycogen synthase kinase 3 (GSK3) inhibitor
(CHIR99021) and cAMP activator (forskolin) reported
significantly reduced tumor growth. More specifically, this
combination modulates neural crosstalk by directly affecting
synaptic-like gene expression in GB cells, with moderate side
effects for healthy neuronal networks, supporting clinical
translatability.76

Specific brain microenvironments have been shown to
reduce GB malignancy. Data from preclinical models and
patient samples reveal that white matter fortifies oligoden-
drocyte precursorelike features in glioma cells. From the
pathologist standpoint, gliomas with oligodendrocyte com-
ponents are typically correlated with better response to ther-
apy and longer survival in patients. From a mechanistic
standpoint, oligodendrocytic transition is mediated by
SOX10 (Figure 2B). This transcription factor is activated by
myelin-associated proteins shed as GB cells co-opt to white
matter tracts. An experimental induction of the oligo-like
shift, which was induced via increased myelin production in
the striatumwith the cationic amphiphilic drug pranlukast, led
to significantly prolonged survival in tumor-bearing mice.46

Physical and Electrical Connections

When integrating to neuronal networks, glioma cells in
culture or ex vivo disrupt the normal electrical activity of
neurons47e51,77e80 (Table 1). This leads to different elec-
trochemical phenotypes, including epileptiform neuronal
firing, or synchronized atypical short or long-lasting oscil-
lations.47 Among neurotransmitters funneled by GB cells,
7
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Figure 2 Brain tumoreneuron crosstalk modulating cancer progression. A: Glioblastoma (GB) cells are sensitive to neuronal synapseespecific neuroligin-3
(NLGN Q22-3). Synapse formation and disconnection are coordinated by the active form of NGNL-3, cleaved from the membrane-bound immature form by a
disintegrin and metalloproteinase domain-containing 10 (ADAM10; yellow). On GB cells, NLGN-3 will potentiate the formation of neoplastic synapse ersatz,
neuronal-like differentiation, and neuronal network integration. B: GB invasion classically co-opts the preexisting brain structures such as microvascular
endothelium and myelinated neuronal tracts of the white matter. Cell invasion partially degrades the extracellular matrix (ECM), releasing myelin-rich cell
debris. On GB cells, myelin has been shown to induce a differentiation toward an oligodendrocyte precursor cell (OPC)-like cell state associated with up-
regulation of the oligo-specific transcription factor SOX10. Interestingly, therapies increasing myelin production leverages OPC-like hysteresis, as GBs with
oligo components are typically less malignant. C: Typical neuronal signaling pathways including neurotransmitters and electrochemical communication have
been shown to support brain cancer progression in patients. Among the neurotransmitters modulating brain tumor progression, glutamate plays a central role
in tumor cell integration to neuronal networks. Neuron-sourced glutamate binds to two ionotropic receptors expressed by brain tumor cells. Those include fast-
acting (<1 millisecond) a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA; blue) and slower (>10 milliseconds) N-methyl-D-aspartate (NMDA;
red) receptors, both modulating neuronal calcium activity. AMPA receptors are expressed in GB cells located at the tumor core and leading edge. In the core,
higher glutamate concentrations activate AMPA receptor (AMPAR)-supporting tumor cell proliferation. At the invasive front, neuronal glutamate evokes AMPA
signaling, facilitating GB cell integration to neighboring neurons through cellular microtubes. When fully integrated to neuronal networks, GB cells up-regulate
a cholinergic receptor [M3 muscarinic acetylcholine receptor (CHRM3)] hence taking advantage of additional neurotransmission initiated by neuronal
acetylcholine. NMDA receptors (NMDARs) are more specifically used by peripheral cancer cells progressing in the brain. Neuronal glutamate activates NMDARs
expressed on synapses ersatz of brain metastatic cells. Interestingly, neurons can suppress brain tumor progression. Reduced tumorigenicity is mediated by the
central inhibitory neurotransmitter GABA and the carbonic anhydrases 10 and 11 (CA10/11) produced by neurons of the leading edge. Once integrated to
neuronal networks, glioma cells can modulate neuronal activity and network stability using membrane-bound proteins (brown arrows) such as tweety family
member 1 (TTYH1) and growth-associated protein (GAP43). TTYH1 enhances axon outgrowth, and GAP43 promotes neoplastic network formation and GB cell
proliferation and invasion. Similarly, tumor cells secrete glypican-3 promoting synaptogenesis and neural hyperexcitability. Brain metastatic cells integrate
into tripartite-like synapses involving neurons and astrocytes (bottom right insert). Reactive astrocytes produce the urokinase/tissue plasminogen activator
(uPA/tPA) converting plasminogen into plasmin. Plasmin is known to be tumor suppressive, used as neural defense mechanism against brain metastasis.
Metastatic tumor cells block plasminogen activation by secreting the uPA/tPA inhibitors neuroserpin and serpin 2B. TSP-1, thrombospondin 1.
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glutamate plays a pivotal role in tumor proliferation and
invasion (Figure 2C). Glioma cells express functional a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, facilitating integration into gluta-
matergic neuronal networks. Remarkably, glutamatergic
integration has been reported in breast cancer BM through
the formation of tripartite synapses resembling astrocytes
and hijacking N-methyl-D-aspartate (NMDA) receptors.
Neural hyperactivity is mediated by potassium-dependent
and AMPA receptoredriven mechanisms, forming electri-
cally coupled networks via gap junctions in glioma cells.
Targeting neural activity and gap junctions could influence
growth modulated by neural activity.42,77 Once integrated,
tumor cells trigger neural glutamatergic hyperexcitability,
which in turn ignites tumor proliferation. Newly integrated
proliferating glioma cells promote synaptogenesis through
glypican-3 secretion, further reinforcing their relationship
with the tumor stroma.

Tumor neuron hyperexcitability resembles the pathologic
description of epilepsy. Tentative repurposing of epilepsy
medication such as perampanel has shown promise for
reducing GB-induced neuronal hyperexcitability39,42,78

(Table 1).
GB cell connectivity to neuronal networks further relies

on M3 muscarinic acetylcholine receptors (CHRM3)78

(Figure 2C and Table 1). Using single-cell electrophysi-
ology recordings and calcium imaging, the authors uncov-
ered distinct connectivity profiles in GB cells, correlated
with an expression “score” of synaptogenic markers in sil-
ico. They further implemented retrograde tracing, a classical
neuroscientific methodology using fluorescent protein
expression systems in engineered viruses, which propagates
within physically connected cell networks.78 This enabled
brain-wide connectivity assessments of live human GB cells
in in vitro, ex vivo, and in vivo xenografts. Among identified
neurotransmitters, dopaminergic, glutamatergic, and
cholinergic elements of language were used by neurons to
communicate with tumor cells (Figure 2C). Increased
neuronal activity leads to acetylcholine release, supporting
GB invasion and expansion in cortical brain areas. CHRM3
genetic (shRNAs) or pharmacologic (perampanel) interfer-
ence effectively disconnected GB cells from neuronal net-
works and improved radiotherapeutic response in preclinical
models.78

Progression of malignant GB is often associated with
symptomatic epilepsy, once again attributed to neural hy-
peractivity surrounding the tumor stroma. Distinct elements
in the gliomaeneuron relationship contribute to symptom-
atic epilepsy, including different glutamate transporters such
as the xCT system. Glutamate serves as a potent growth
enhancer, whereas GABA, the central inhibitory neuro-
transmitter, counteracts this effect (Figure 2C). From a
pharmacologic standpoint, understanding epilepsy in GB
presents opportunities for novel therapeutic approaches,
including approved epilepsy drugs such as sulfasalazine.48

Repeated anesthesia with isoflurane significantly reduces
The American Journal of Pathology - ajp.amjpathol.org
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tumor invasion by affecting GB calcium activity. Isoflurane
is currently used in the treatment of refractory status epi-
lepticus, commonly known as persisting seizures in patients
despite administration of first- and second-line medications.
With validated indication for other neuropathologies,49 this
supports isoflurane’s translatability to GB care when tar-
geting tumor microtube formation.8,39

The contribution of GABA and its receptor GABAA to
glioma tumorigenesis and progression has been investigated
in several studies, reporting different roles to this neuro-
transmitter. GABAA is expressed by mouse and human GB
cell lines, which also produce and release GABA. This auto/
paracrine signaling has initially been shown to slow glioma
proliferation mediated by the histone H2AX phosphoryla-
tion79 (Figure 2). In Qvivo pharmacologic studies show that
GABAA inhibition with bicuculline lifted off tumor cell
proliferation and tumor growth, whereas increasing GABAA

activity with muscimol prevented tumor initiation. More
recently, studies of diffuse midline gliomas occurring in
pediatric patients have found that GABA and GABAA have
an inverse role of promoting tumor growth and fortifying
neoplastic synapses.50 Pharmacologic activation of GABAA

with lorazepam, an anxiety reliever given to younger pa-
tients with brain tumors undergoing neuroimaging, showed
potentiated GABAergic currents in glioma, which fueled
tumor cell proliferation and reduced survival in preclinical
models.50 The authors speculate on the versatile role of
GABA signaling based on the patient’s age (pediatric vs
adult gliomas) and typical intertumoral heterogeneity
observed in IDHewild-type high-grade gliomas.

GB cell migration is influenced by electrotaxis, a
response to electric fields increasing directed migration,
albeit away from the tumor core in a symmetrical pattern.
Pioglitazone, a peroxisome proliferator-activated receptor
agonist, disrupts key signaling pathways, including
epidermal growth factor receptor/phosphatidylinositol 3-
kinase/protein kinase B, preventing electrotaxis-guided
migration. Understanding these mechanisms may provide
insights on how to clinically modulate and/or prevent GB
dissemination supported by neuronal electrical activity.80

Contralateral brain activation promotes glioma infiltration
and progression. Recent reports have identified the SEMA4F
gene as being associated with brain network hyperactivity,
correlated with enhanced glioma progression and infiltra-
tion.51 In vivo models show that overexpression of the
SEMA4F in glioma cells leads to enhanced infiltration and
shorter survival. On the other hand, glioma cell SEMA4F
knockdown resulted in reduced infiltration and longer sur-
vival in preclinical studies.
Connectivity during the Progression of Primary
Brain Tumors and Peripheral BM

This last section highlights the relationships between brain
microenvironment and GB phenotypic cell states. Although
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featured in fewer studies, the brain microenvironment is also
a critical component for the progression of peripheral can-
cers to the CNS. We explore here the dynamic nature of
these relationships and their implications for glioma and
BM diagnoses with therapeutic opportunities.

Complexity of GB Cell Architecture

In the IDHewild-type GB, recurrent tumors tend to asso-
ciate with neural, mesenchymal, and astrocytic phenotypes,
whereas IDH-mutant GBs primarily consist of a prolifera-
tive phenotype enriched with stem cellelike tumor cells.
The plasticity of IDH status, influenced by factors such as
physical position and microenvironment (eg, leading edge
or tumor necrosis), underscores the complexity of GB pro-
gression. Notably, recurrent GB cells exhibit a tendency to
acquire neuron-like characteristics as RNA sequencing data
suggest that approximately 66% of recurrent IDH-WT GBs
associate with a neuronal phenotype. Neural signaling
emerges as a key player in promoting invasiveness, exem-
plified by the expression of stem cell markers such as
synaptome-associated protein 25 (SNAP25) in recurrent
cells, contributing to stem-like neoplastic cell recurrence at
the invasive front.52

GB exhibits four cellular states: neural progenitorelike,
oligodendrocyte precursor cellelike, astrocyte-like, and
mesenchymal-like.81 Single GB tumors include all four
states in different proportions, which reflects the dynamic
influence of the tumor microenvironment and mirrors early
brain development. Spatial transcriptional studies of human
GB identified neurodevelopmental territories, enriched with
gene expression signatures recapitulating oligodendrocytic
lineages (pre-, early- and late-oligodendrocyte precursor
cells), neural development, reactive immune, radial glia, and
reactive hypoxia.82 All those are shaped by the tumor
microenvironment influence on GB cellular states, illus-
trating the nuanced interplay between genetic and environ-
mental factors. Notably, stress factors such as hypoxia drive
the reactive hypoxia program, which emerges due to
excessive proliferation, genetic alterations, and cellular
migration toward nonhypoxic areas. Transcriptomic states
in patient samples also correlate with pathologic features,
including GB invasiveness and connectivity to neuronal
networks.48 These findings highlight the potential for
personalized GB treatment approaches by mapping out GB
genetic transcriptional heterogeneity and dominant pheno-
typic states guiding the therapeutic decision.82 For instance,
glioma infiltration disrupts brain hemodynamics and neu-
rovascular structure, leading to seizures originating from the
tumor margin and oxygen deficiency in the brain.
Neurovascular-associated alterations due to tumor infiltra-
tion have been observed, shedding light on the intricate
relationship between glioma and neural responses.83

Neurofibromatosis type 1 (NF1) gene mutations
contribute to low-grade gliomas affecting the optic nerve
(optic pathway gliomas) in early childhood. Light exposure
10
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has been shown to stimulate the development of optic
pathway gliomas, with NF1 mutation increasing NLGN3
shedding by ADAM10, and drives their progression. The
findings emphasize the environmental and genetic factors
contributing to the development of optic pathway glioma.53

Glioma synapses recruit mechanisms of adaptive plas-
ticity. A recent study shows how glioma plasticity recapit-
ulated neuronal plasticity established during memory
formation in the adult brain.54 Binding of the brain-derived
neurotrophic factor (BDNF), the endogenous ligand to the
neurotrophic receptor kinase 2 (NTRK2), promotes the
progression of diffuse intrapontine glioma through neuro-
plasticity mechanisms. This interaction increases the
amplitude of glutamatergic current and neuron-to-glioma
synapse formation. Interestingly, NTRK2 inhibitors such
as entrectinib significantly reduced the proliferation of gli-
oma cells in vitro. BDNF-NTRK2 signaling axis is a prime
example of how glioma cells reinvent neural plasticity
during tumor progression (Table 1).
Although there is no concrete evidence connecting brain

physical trauma and GB incidence in patients (see Struc-
tural Communication), developmental studies underline the
similarities between gliomagenesis and injury response.84 In
this extensive transcriptomic study at the single-cell reso-
lution of >100,000 mouse brain cells, the genetic evolution
of preneoplastic, lower grade, and advanced brain tumors
were compared to an experimentally induced brain injury.
At early stages of both pathologies, a pre-neoplastic cell
population type resembling neural crest cells is consistently
captured. Those very undifferentiated cells are gradually
replaced by neuronal precursor cell populations as both
pathologies progress. These provocative findings not only
propose that gliomagenesis and neurodevelopment share
extremely similar cellular hierarchies but also that brain
injuries could provide microenvironmental prerequisites for
GB emergence.

Molecular Intelligence of Peripheral Tumor Cells for
Brain Microenvironment Integration

Although originating from very different milieu, malignant
peripheral cancers frequently progress in the brain as BM.
Indeed, BM are more frequent than GB2 yet experimental
studies focusing on their integration to the brain are more
limited. This can be explained in part by the lack of reliable
experimental models and relevance to the human disease.
BM are often occurring at a terminal stage of the peripheral
progression when most therapeutic options have failed and
lethality is high.2 Unfortunately, tumor sampling of BM is
not systematically performed in clinics. However, recent
clinical and academic collaborations have led to great ad-
vances in the data availability and accessibility of BM
biology. Those Qrecent examples generated and shared
comprehensive data sets on the immune, vascular, and
microenvironment landscapes of BM, such as the Brain-
TIME resource (Joyce Lab, https://joycelab.shinyapps.io/
ajp.amjpathol.org - The American Journal of Pathology
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braintime, last accessed April 2025). This dedicated section
centralizes the key research studies reporting
interconnectivity between neurons, astrocytes, and BM
cells55e61 (Table 1).

Breast-to-brain metastasis represents a significant chal-
lenge, particularly in triple-negative and basal-type HER1-
positive breast cancers. Breast cancerederived brain meta-
static cells have been shown to express neuronal NMDA
receptors, enabling brain parenchyma colonization and
reduced survival. Glutamate signaling emerges as a potent
growth stimulator for breast-to-brain metastasis, leading to
the formation of pseudo-tripartite synapses that mimic
normal astrocyteesynapse interactions, rerouting a source
of glutamate for tumor growth.9 Fast-progressing breast BM
or tumor cells undergoing irradiation overexpress the trun-
cated glioma-associated oncogene homolog 1 (tGLI1).55

This transcription factor modulates the expression of stem
cell genes enabling breast BM adaptation, including
manipulating neighboring astrocytes into tumor-supporting
phenotypes.55

Central mechanisms such as tumor innervation are also
observed in peripheral tumors, including prostate cancer.
Cancer cells exploit nerve endings to modify the tumor
microenvironment into a more supportive niche to promote
growth. In cellular models, preventing this process using
blocking antibodies targeting the precursor of the nerve
growth factor offers potential for delaying cancer
progression.56

Small-cell lung cancer is characterized by frequent wide-
spread metastasis (up to two-thirds of patients), and survival
postdiagnosis rarely exceeds 1 year. Active crosstalk between
astrocytes and lung metastatic cells has been identified in
preclinical models and in culture.57 Lung cancer cells release
signals, including macrophage migration inhibitory factor
(MIF), plasminogen activator inhibitor-1 (PAI-1), and IL-8,
inducing astrocyte reactivity. In turn, tumor-activated astro-
cytes release IL-6, tumor necrosis factor alpha, and IL-1b
promoting lung metastases growth.57 Tumor astrocytes also
reshape the microenvironment of lung and breast cancer BM
by releasing MMP2 and MMP9.58 Extracellular matrix
modification by astrocytes triggers invasive dissemination of
lung and breast BM in cultures and preclinical models, which
can be counteracted by using pan-MMP inhibitors, including
ONO-4817, marimastat, batimastat, or MMP2- and MMP9-
blocking antibodies.58

Beyond molecular signals, BM from small-cell lung
cancer are electrically active and evoke calcic responses.59

Similarly to GB cells, small-cell lung cancereBM integra-
tion to neuronal networks is supported by the neurotrans-
mitter acetylcholine. This integration can be prevented by
using ion channel blockers such as the pufferfish poison
tetrodotoxin. In addition, the authors showed that increased
electrical stimulation of BM by neurons fueled tumor pro-
gression, whereas optogenetic and pharmacogenomic
interference compromised small-cell lung cancer tumorige-
nicity in vivo.59
The American Journal of Pathology - ajp.amjpathol.org
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Melanoma BM exhibits distinct features compared with
those of non-CNS metastases. In patients and preclinical
models, cooperation between astrocytes and melanoma BM
through signals such as IL-2360 and CXCL1061 have been
shown to promote tumor cell dissemination in the brain.
Single-cell RNA sequencing and transcriptomic analyses
further identified intricate interactions between melanoma
BM and the treatment-naive brain ecosystem.85 Notable
changes include the activation of microglia and the
promotion of chromosomal instability, neural-like differen-
tiation, and shifts in gene signatures. For instance, neuronal-
like differentiation of melanoma BM unlocked higher
invasive capacity compared with parental cells, whereas
overexpression of glucose metabolism, hypoxic response,
and matrix proteins accelerated tumor growth. Non-brain
metastasis, in contrast, displays a gene signature promot-
ing epithelial-to-mesenchymal transition. These discoveries
of BM-specific neural programs and ecosystem fitness after
therapy provide new insights on BM progression and a new
framework to design precision medicine targeting BM
plasticity.85
GB and BM Treatments from Preclinical to the
Clinic

As mentioned in the opening of this article, the typical first-
line treatment for newly diagnosed GB consists of maximal
safe surgical resection followed by radiation therapy with
concurrent and adjuvant temozolomide chemotherapy.86

Since 2018, tumor-treating fields can be prescribed to pa-
tients aged <65 years. Tumor-treating fields are low-
intensity, 200 kHz alternating electric fields applied to the
head of the patient, shown to reduce the tumor mitotic index
and prolong survival up to 4.9 months.87 Over the past 2
decades, many attempts were made to repurpose peripheral
cancer precision medicine for malignant brain tumors. These
include drugs targeting DNA repair pathways, immuno-
therapies, vaccine therapies, oncolytic viruses, and modifi-
cations of radio/surgery protocols (reviewed elsewhere88).
However, none of these strategies has significantly
improved brain tumor patient survival.

The implementation of clinical trials focusing on GB is
challenging due to the low incidence and progression speed
of GB. To circumvent this scenario, it has been suggested
that clinical studies could be performed as multicenter trials,
which would increase enrollment numbers and improve
accessibility for patients. In addition to clinical trial orga-
nization hurdles, individual patient heterogeneity makes it
challenging to generalize therapeutic outcomes in brain tu-
mors. For Qinstance, highly innovative chimeric antigen re-
ceptor T-cell therapy usually hit the immunosuppressive
wall built within the grade IV GB microenvironment.
Interestingly, chimeric antigen receptor T-cell therapy
shows promise for grade I to III pediatric gliomas in phase 1
11
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trials,89 illustrating the diversity in chemosensitivity of glial-
derived tumors.

Cancer neuroscience is still at its infancy in academia and
de facto in the clinics. However, two standard-bearer trials
are hopefully paving the way to the next generation of brain
tumor precision medicine. First, the PerSurge (under the
European Trial identifier #2023-503938-52-00) phase 2 trial
takes advantage of a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor inhibition using the anti-
epileptic perampanel, which has been approved by the US
Food and Drug Administration for the treatment of invasive
GB. In preclinical assessments, perampanel disconnected
tumor cells from neurons, impairing GB progression8,44

(Table 1). In the ongoing human trial, perampanel is
administered before and after surgical resection.90 The
second trial is currently investigating the inhibition of
STAT3 in BM (under the US Trial identifier
NCT05793489). In preclinical models, the investigators of
this clinical trial have shown that reshaping the brain
astroglial and immune brain landscapes using silibinin
together with immunotherapy has dramatically impaired the
metastatic dissemination.91 This also extended the survival
of mice from 20 to 35 days. In patients with BM, active
phosphorylation of STAT3 in reactive astrocytes correlates
with reduced survival. This ongoing human study therefore
challenges two treatment options: whole-brain radiation
therapy and silibinin versus whole-brain radiation therapy
alone.

In conclusion, relationships between cancer cells and
stroma are one of the hallmarks of malignancy. However,
the degree of complexity of these interactions is unmatched
to that of CNS tumors. Indeed, cancer cells implement both
a molecular and electrochemical language to mimic, interact
with, and reprogram the brain parenchyma. First, coopera-
tion of primary brain tumor cells with astroglial populations
is necessary for proper integration and propagation of the
tumor. Following tumor progression, GBs and BMs repro-
gram astrocytes into cancer-promoting entities through
physical connections and paracrine signaling. Supporting
astrocytes exhibit distinct cell states and phenotypes asso-
ciated with the peri- and intra-tumoral environment, accel-
erating the tumor progression. Astrogliosis at the tumor
leading edge or in the resection cavity after neurosurgery
has been shown to influence GB phenotypic cell states to-
ward more aggressive and chemoresistant subtypes.

In addition to classical paracrine and autocrine routes
leveraging growth factor signals, many brain tumors
implement electrochemical connections that imitate
neuronal synapses. Increasing connectivity by any means
provides brain tumors with higher resistance to therapeutic
interventions, from surgery to radiotherapies and chemo-
therapies. Remarkably, recent discoveries have uncovered
how peripheral metastatic cancer progression to the brain
also develops abilities to mimic neuronal networks and
further infiltrate the parenchyma. This non-exhaustive
compendium of the main elements of language between
12
REV 5.7.0 DTD � AJPA4282_proof �
tumor and brain also reflect the recent advances in the field
of cancer neurosciences. Additional research and review
articles focusing on the bidirectional relationship between
astrocyte and GB,92e97 BM and neurons,98e100 as well as
the consequence of brain tumor progression on the brain
functionality,101e103 are compiled in Supplemental Table
S1. This table provides the reader with additional insights
on cancer neuroscience. In the context of clinical practice, a
better understanding of the mechanisms regulating neuro/
plastic features of brain tumors will define future therapeutic
regimens aiming at disconnecting neoplastic networks.
Recent experimental evidence has indeed shown how mo-
lecular excision of neoplastic synapses can isolate and make
fragile tumors within the brain. This further improved the
therapeutic response, even to traditional cancer
chemotherapies.
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