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A B S T R A C T

Gliomas, the most prevalent malignant primary brain tumors in adults, represent a heterogeneous group of 
neoplasms characterized by poor prognosis and limited therapeutic options, particularly in high-grade cases. 
Understanding the molecular mechanisms underlying glioma pathogenesis is crucial for developing novel and 
effective treatment strategies. In recent years, increasing attention has been directed toward the tripartite motif 
(TRIM) family of proteins, a class of E3 ubiquitin ligases, due to their significant roles in glioma development and 
progression. This review comprehensively explores the diverse functions of TRIM proteins in gliomas, including 
their expression patterns, prognostic significance, and mechanisms of action that are both ubiquitination- 
dependent and -independent. By synthesizing current knowledge, we aim to elucidate the role of TRIM pro
teins in glioma pathogenesis and identify potential therapeutic targets within this protein family.

Introduction

The tripartite motif (TRIM) proteins are a group of subordinate 
members of the RING-type E3 ubiquitin ligases. In humans, more than 
70 TRIM proteins have been identified, most of which are characterized 
by a unique structure consisting of one RING-finger domain, one or two 
B boxes domains, and an associated coiled-coil region [1] (Fig. 1). 
Recent studies have demonstrated that many TRIM proteins play pivotal 
roles in multiple physiological and pathophysiological processes, 
including viral infections, carcinogenesis, inflammatory and neuropsy
chiatric disorders [2–6].

Gliomas, the most prevalent malignant primary brain tumors in 
adults, are classified into grades 1–4 according to the world Health 
Organization (WHO) criteria [7]. The overall 5-year survival rate for 
patients with gliomas is approximately 35 %, whereas for glioblastoma 
(WHO Grade 4), the five-year survival rate is only about 5 % [8–10]. 
Despite continuous advancements in the treatment of glioblastoma in 
recent years, including traditional methods such as surgical interven
tion, radiation therapy, and chemotherapy, as well as newly proposed 
treatments like immunotherapy and electric field therapy, the survival 
rates for patients with glioblastoma have not seen significant improve
ment [11–13]. This underscores the critical need for a deeper under
standing of glioma pathogenesis and the development of novel 

therapeutic strategies to improve patient outcomes. Emerging evidence 
has implicated TRIM proteins in multiple aspects of glioma pathobi
ology, including tumorigenesis, invasiveness, proliferation, stemness 
maintenance, therapy resistance, and tumor recurrence [14–18]. 
Moreover, targeting TRIM proteins has garnered considerable attention 
as a therapeutic strategy, with some pre-clinical experiments showing 
promising results [19–21]. This review provides a comprehensive 
analysis of the multifaceted roles of TRIM proteins in glioma, encom
passing both their ubiquitin ligase functions and non-ubiquitination 
activities. Furthermore, we discuss recent developments and future 
prospects in targeting TRIM proteins as an innovative therapeutic 
approach for glioma treatment.

A survey of the structural and functional features of TRIM 
proteins

Structure and function of the N-terminal region

The nomenclature of the tripartite motif (TRIM) protein family stems 
from the presence of a RING domain, one or two B-box domains and a 
coiled-coil region situated at the N-terminus. The TRIM proteins are 
commonly classified as E3 ubiquitin ligases due to the presence of their 
RING domain. In detail, the RING finger domain typically consists of 
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10–20 amino acid residues located in the N-terminal region, organized 
by an arrangement of cysteine and histidine [21,22]. Specifically, the 
N-terminal region contains a pair of cysteine residues, while the C-ter
minal region contains a pair of histidine residues, which combine to 
form a cavity that can bind two zinc atoms [21,23]. This binding event is 
crucial for mediating ubiquitination reactions of either the protein itself 
or various substrates. Consequently, the RING finger domain has 
become a hallmark of many E3 ubiquitin ligases. However, TRIM pro
teins belonging to the UC subfamily lack a RING domain, which implies 
the absence of E3 ubiquitin ligase activity [21,24].

The B-box domains, which are categorized into two types (B-box1 
and B-box2) based on the presence of one or two distinct zinc-binding 
motifs, can either enhance the catalytic activity of the RING domain 
or facilitate substrate ubiquitination independently [25]. In detail, the 
B-box1 and B-box2 domains exhibit limited sequence similarity, with 
the exception of conserved cysteine and histidine residues, which are 

present in eight and seven residues, respectively, across most B-box1 and 
B-box2 domains [25]. Moreover, the B-box1 domain, spanning from 
Val117 to Pro164, is composed of a three-turn alpha-helix, two short 
beta-strands, and three beta-turns [25,26]. This domain is known to 
bind two zinc atoms, with one being coordinated by cysteine residues 
119, 122, 142, and 145, while the other is coordinated by cysteine 134, 
137, and histidine 150 and 159. On the other hand, the B-box2 domain 
consists of a short alpha-helix and a structured loop that contains two 
short anti-parallel beta-strands [25,26]. Despite the lack of primary 
sequence similarity with the B-box1 and RING structures, the B-box2 
domain adopts a tertiary structure similar to them. In addition, the 
B-box2 domain coordinates two zinc atoms in a ’cross-brace’ pattern, 
with one being coordinated by Cys175, His178, Cys195, and Cys198 and 
the other being coordinated by Cys187, Asp190, His204, and His20726.

The coiled-coil domain, which is highly conserved across all TRIM 
proteins and frequently positioned downstream of the B-Box2 domain, 

Fig. 1. Schematic representation of TRIM protein domain structures.
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acts as a conserved structural scaffold that facilitates the formation of 
anti-parallel homodimers or heterodimers [27,28]. Previous research 
has identified a pattern of conserved hydrophobic amino acids, with 
leucine being the most frequently represented residue, within a 
contiguous helical structure of approximately 110 amino acids in the 
coiled-coil region of most TRIM proteins, indicating the conservation of 
the unique arrangement of heptad and hendecad repeats throughout the 
entire TRIM protein family [28].

Structure and function of the C-terminal region

While the N-terminal domains exhibit similarity across subtypes, the 
C-terminal domains of TRIM proteins differ among subfamilies, leading 
to classification into C-I to C-XI subtypes based on their unique C-ter
minal domains [29,30]. The C-terminal domains of TRIM proteins 
comprise various distinct domains, such as the Fibronectin type-III 
domain (FN3), COS domain, B30.2/SPRY domain (SPRY), PRY 
domain, acid-rich region (ACID), filamin-type I domain (FIL), NHL 
domain, PHD domain, Meprin and TRAF-homology domain (MATH), 
transmembrane region (TM), ADP-ribosylation factor family domain 
(ARF), and bromodomain (BRD) [27]. In detail, the PHD domain and the 
adjacent bromodomain contribute to DNA-binding properties and confer 
transcriptional regulation [31]. The COS domain is essential for micro
tubule binding, while the ARF domain regulates intracellular trafficking 
through GTP hydrolysis activity [29,31]. Prior studies have identified 
the prevalence of the fibronectin type III motif among cell surface pro
teins, suggesting its potential role in mediating molecular recognition 
processes [31]. The filamin-type I domain, characterized by its 
immunoglobulin-like structure, binds to several scaffolding, signaling, 
and transmembrane proteins, thus playing essential roles in regulating 
various cellular processes, including cell morphology, adhesion, 
migration, differentiation, and mechanosensing [32]. The PRY-SPRY 
domain has been identified as a critical component of innate immune 
responses and the recognition of certain proteins, while also playing a 
crucial role in subcellular localization of specific TRIM proteins [33]. 
For example, the interaction between the C-terminal SPRY domain of 
TRIM25 and the N-terminal CARDs of RIG-I facilitates the transfer of Lys 
63-linked ubiquitin moiety to the N-terminal CARDs of RIG-I, leading to 
a significant enhancement in the downstream signaling activity of RIG-I 
[34]. Lastly, the Meprin and TRAF-homology domain, functioning to 
facilitate receptor binding and oligomerization, is capable of partici
pating in various modular arrangements as an independent folding unit, 
determined by multimerization domains that are linked to it [31,35].

Expression pattern and prognostic value of TRIM proteins in 
glioma

Modulation of TRIM proteins in glioma

The expression of TRIM proteins in glioma is often altered through 
various mechanisms, including genetic alterations, DNA methylation 
and abnormal transcriptional activities at the gene level, regulation by 
non-coding RNAs such as mi-RNA, circRNAs, and lncRNA at the mRNA 
level, and post-translational modifications like ubiquitylation at the 
protein level.

Firstly, to investigate the genetic alterations of TRIM proteins in 
glioma, we utilized Cbioportal to analyze the occurrence of such alter
ations in the TCGA-LGG (Lower-grade glioma/514 patients) and TCGA- 
GBM (Glioblastoma/390 patients) cohorts, respectively [36,37]. The 
results show that the incidence of genetic modifications in patients 
diagnosed with LGG or GBM exhibits a similar pattern, with TRIM genes 
being altered in approximately 33 % of LGG patients (168 events among 
514 patients) and 32 % of GBM patients (126 events among 390 pa
tients). Among the TRIM genes examined, namely TRIM3(4 %), TRIM5 
(4 %), TRIM6(4 %), TRIM21(4 %), TRIM22(4 %), TRIM28(4 %), 
TRIM34(4 %), TRIM68(4 %), TRIML1(4 %), and TRIML2(4 %), the 

mutation rates were relatively higher in LGG patients (Figure S1), while 
in GBM patients, relatively higher mutation rates were observed in 
TRIM76(2.8 %), TRIM50(2.6 %), and TRIML1(2.6 %) (Figure S2). 
Notably, TRIM3 gene is located within the chromosomal locus 11p15.5, 
and approximately 20 % of human glioblastoma samples demonstrate 
loss of heterozygosity in this region [38,39]. Despite the presence of an 
intact 11p15.5 locus in many GBM samples, analysis has revealed a 
lower than anticipated expression of TRIM3, indicating the potential 
involvement of other mechanisms in the regulation of TRIM3 expression 
[40]. Given that the 11p15 region is also prone to frequent dysregulated 
DNA methylation and loss of imprinting [41], it is possible that DNA 
methylation may play a role in the low expression of TRIM3. Interest
ingly, The TRIM8 gene is located on chromosome 10q24.3, which also is 
a region that exhibits frequent deletion or loss of heterozygosity in GBM 
[42]. Despite its frequent hemizygous deletion in GBM, TRIM8 dem
onstrates similar expression levels in GBM samples as in normal brain 
tissue [43]. A plausible mechanism for this phenomenon is the activa
tion of STAT3, which upregulates TRIM8 and thus enables the normal
ization of TRIM8 expression in the context of hemizygous gene deletion 
[43]. In addition, certain transcription factors linked to the aberrantly 
activated signaling pathways in glioma have the potential to regulate the 
expression of TRIM proteins. For instance, TRIM19 (PML) transcription 
is suppressed by transcription factor SOX2 in GBM cells [44]. Addi
tionally, in EGFR/EGFRvIII-driven gliomas, the activation of STAT3 by 
EGFR/EGFRvIII enhances the transcription of TRIM2414. TRIM59 tran
scription is activated by EGFR/EGFRvIII through transcription factor 
SOX9 in GBM cells [45]. Similarly, our previous work has demonstrated 
that the transcription factor SP1 can directly bind to the − 91 to − 82 
region of the TRIM56 promoter, resulting in the activation of TRIM56 
transcription [46].

Secondly, microRNA (miRNA) has the ability to modulate the 
expression of TRIM proteins through various mechanisms, including 
inhibition of mRNA translation and induction of mRNA decay. For 
instance, the expression of TRIM8 is regulated by miR-17 through direct 
binding to the 3′-untranslated region (3′-UTR) of TRIM8 [47]. The 
miR-491 functions as a tumor suppressor by binding to the 3′-UTR of 
TRIM28 and subsequently downregulating TRIM28 protein levels [48]. 
Similarly, miR-101–3p [49] and miR-623 [50] directly inhibits TRIM44 
translation by binding to its 3′-UTR. In addition, both circular RNAs and 
long non-coding RNAs (lncRNAs) have the ability to function as miRNA 
sponges, leading to the inhibition of miRNA activity. For example, cir
cular RNA Circ_0000741 functions as a competitive endogenous RNA by 
sequestering miR-379–5p, thereby relieving its inhibitory effect on 
TRIM14 expression [51]. Circ_0005198 acts as a sponge for miR-198, 
which binds to the 3′UTR of TRIM14, thus elevating TRIM14 expres
sion [52]. In addition, TRIM14 was reported to be directly regulated by 
miR-6893–3p, whereas the lncRNA CHASERR can act as a sponge for 
miR-6893–3p thus indirectly affecting TRIM1453. Interestingly, TRIM24 
has been reported as a downstream target of both miR-137 [54] and 
miR-138–2–3p [55], with lncRNA NCK1-AS1 upregulating TRIM24 
expression by repressing miR-137 and miR-138–2–3p. TRIM44 is a 
target of miR-194–5p, and circ_0030018 upregulates TRIM44 by 
sequestering miR-194–5p [56]. Similarly, LINC01857 functions as a 
putative competing endogenous RNA that sequesters miR-1281, thereby 
reducing its expression levels and ultimately upregulating TRIM65 
expression [57].

Thirdly, expression of TRIM proteins can be altered directly at pro
tein level in gliomas. For example, MAPKK6 exerts a stabilizing effect on 
TRIM9 protein through the promotion of phosphorylation at Ser76/80 
residues via the p38 pathway, thereby impeding degradation via the 
ubiquitin-proteasome pathway [58]. In addition, USP11 can stabilize 
and upregulate TRIM19 level by serving as a deubiquitinating enzyme 
for TRIM19 [59]. The SP140 inhibitor GSK761 was reported to inhibit 
the mRNA and protein level of TRIM22 [60]. LncRNA PVT1 increases 
the protein level of TRIM24 by deubiquitinating TRIM24 through 
COPS5 and interacting directly with TRIM24 [61]. The abnormal 

W. Wu et al.                                                                                                                                                                                                                                     Translational Oncology 58 (2025) 102419 

3 



upregulation of MAGED4B has been shown to promote glioma pro
gression by enhancing the ubiquitination and subsequent degradation of 
TRIM27 [62].

Overall, in the context of glioma, multiple lines of evidence indicate 
that the expression levels of TRIM3 [63], TRIM8 [47], TRIM9s [58], 
TRIM17 [64], TRIM33 [65], TRIM45 [66], and TRIM48 [67] are 
down-regulated in comparison to normal brain tissue, while 
up-regulation is observed for TRIM6 [68–70], TRIM7 [71], TRIM11 
[72], TRIM14 [53,73], TRIM19 [74], TRIM21 [75], TRIM22 [76], 
TRIM24 [77], TRIM25 [78,79], TRIM27 [80], TRIM28 [81], TRIM31 
[82,83], TRIM37 [84,85], TRIM44 [86], TRIM47 [87,88], TRIM56 [89], 
TRIM65 [57], TRIM66 [90], and TRIM67 [91]. Notably, the expression 
of TRIM8 in glioma remains controversial, as two separate studies have 
reported conflicting findings. Specifically, one study found that TRIM8 
expression in glioblastoma is similar to that in normal brain tissue, while 
the other study reported a decrease in TRIM8 expression in high-grade 
glioma [43,47].

Prognostic significance of TRIM proteins in glioma

The search for biomarkers has been a hot issue in tumor research 
[92–94]. To assess the prognostic significance of TRIM proteins in gli
omas, we conducted a univariate Cox analysis within the TCGA-LGG, 
TCGA-GBM, and Pan-glioma cohorts. Our analysis revealed that 
numerous TRIM proteins demonstrated significant prognostic value in 
the LGG cohort (Figure S3). However, in the GBM cohort, only TRIM4, 
TRIM13, and TRIM56 exhibited significant prognostic associations 
(Figure S4). Notably, TRIM13 and TRIM56 showed consistent prog
nostic significance across all three cohorts examined (Figure S5). The 
limited prognostic impact of individual TRIM proteins in GBM may be 
attributed to the highly aggressive nature of this malignancy and the 
generally poor prognosis associated with it. In such an aggressive disease 
context, alterations in the expression of individual TRIM proteins may 
have less pronounced effects on patient outcomes. Additionally, prog
nostic signatures developed in several studies by combining TRIM genes 

Fig. 2. TRIM proteins mediate ubiquitination of downstream molecules via K48- or K63-linked chains.
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with other molecular markers have demonstrated strong predictive 
power [64,95–98].

An overview of various roles of TRIM proteins in glioma

TRIM proteins act as E3 ubiquitin ligases in glioma

Most TRIM proteins function as E3 ubiquitin ligases due to the RING- 
finger structural domain. Ubiquitination is a post-translational modifi
cation that involves the attachment of ubiquitin molecules to target 
proteins. This process is classified into seven main types based on the 
specific lysine residues involved: K6, K11, K27, K29, K33, K48, and K63 
[99,100]. Among these, K48- and K63- linked ubiquitination are two of 
the most studied types. K48-linked ubiquitination is typically associated 
with the proteasomal degradation of target proteins, while K63-linked 
ubiquitination is extensively involved in other cellular functions such 
as signal transduction and DNA damage response [99–101]. In glioma, 
many TRIM proteins have been reported to mediate K48 or K63 ubiq
uitination of substrate proteins, subsequently influencing tumor bio
logical behavior (Fig. 2).

TRIM proteins: molecular maestros orchestrating ubiquitin-mediated protein 
degradation

TRIM6 inhibits FOXO3A protein levels by promoting FOXO3A 
ubiquitination and subsequent degradation, promoting glioma cell 
proliferation, invasion, and migration [68]. TRIM7 facilitates 
K48-linked ubiquitination and subsequent degradation of NCOA4, 
resulting in decreased NCOA4-mediated ferritinophagy and ferroptosis 
in glioblastoma cells [71]. TRIM8 facilitates the ubiquitination of PIAS3, 
resulting in its subsequent degradation by the ubiquitin-proteasome 
system [43]. This process activates STAT3 signaling, thereby preser
ving the stemness and self-renewal properties of glioblastoma stem-like 
cells (GSCs) [43]. However, an additional study has reported that TRIM8 
functions as a tumor suppressor in glioblastoma by impeding the pro
liferation of glioblastoma cells [47]. TRIM21 has been reported to pro
mote the ubiquitination and degradation of several proteins, including 
CREB [102], IFI16 [103], HuR [103], CD47 [104], TIF1γ [105], MLPH 
[106], PFKP [107], and Cx43 [108]. These processes are modulated by 
various factors: CUEDC2 enhances CREB ubiquitination [102]; ARPC1B 
inhibits the ubiquitination of IFI16 and HuR [103]; CD47 Y288 phos
phorylation impedes CD47 ubiquitination [104]; O-GlcNAcylation hin
ders MLPH ubiquitination [106]; and S386 phosphorylation of PFKP 
restricts its ubiquitination [107]. The dysregulation of these ubiquiti
nation processes results in either reduced degradation of oncogenic 
proteins or enhanced degradation of tumor suppressors, ultimately 
contributing to the malignant phenotype of glioma. TRIM22 promotes 
K48-linked ubiquitination and protein degradation of IκBα [76] and 
Raf-1 [109], leading to activation of NF-κB and MAPK signaling path
ways and tumor progression. TRIM25 plays a crucial role in mediating 
the ubiquitination and subsequent degradation of proteins such as 
ITPKB [110], CIC [111], CHKα [112], and Keap1 [113]. Similarly, this 
process is influenced by various factors: TRIM25 S100 phosphorylation 
inhibits the ubiquitination of ITPKB [110], ATXN1L blocks the ubiq
uitination of CIC [111], and ENO1 impedes the ubiquitination of CHKα 
[112]. These disruptions in the ubiquitination process contribute to 
tumor progression and resistance to treatment. TRIM27 directly binds to 
LKB1 and promotes K-48 ubiquitination and degradation of LKB1, which 
enhances glycolysis and promotes malignant progression of GBM cells 
by regulating the LKB1/AMPK/mTOR pathway [80]. TRIM33 acts as a 
tumor suppressor by promoting ubiquitination and degradation of 
β-catenin [65]. TRIM47 promotes ubiquitination and degradation of 
FOXO1, leading to glioma progression [88]. TRIM59 promotes the 
ubiquitination and degradation of the tumor suppressor histone variant 
macroH2A1, thereby enhancing the activation of the STAT3 signaling 
pathway and driving tumorigenesis [114].

TRIM proteins: versatile regulators driving ubiquitination beyond protein 
degradation

TRIM9s promotes K63-linked ubiquitination at the Lys82 site of 
MKK6 while inhibiting K48-linked ubiquitination at the same lysine 
residue [58]. This dual regulation prevents MKK6 protein degradation 
and thereby enhances p38 signaling. TRIM21 facilitates the transport of 
β-catenin from the cytoplasm to the nucleus by mediating its K63 
ubiquitination [105]. TRIM22 enhances K63-linked ubiquitination of 
RIG-I while attenuating K48-linked ubiquitination, thereby activating 
the RIG-I/NF-κB/CCAR1 signaling axis and promoting glioma prolifer
ation [115]. TRIM25 maintains K63-linked ubiquitination of NONO and 
ensures the normal splicing function of NONO, which further leads to 
activation of the PRMT1/c-MYC pathway and progression of GBM [78]. 
TRIM26 directly interacts with GPX4 through its RING domain, cata
lyzing the ubiquitination of GPX4 at K107 and K117 sites, promoting the 
switch from K48 to K63 ubiquitination, thereby enhancing the stability 
of the GPX4 protein and inhibiting ferroptosis [116]. Similarly, TRIM45 
interacts with and stabilizes p53 by attaching K63-linked polyubiquitin 
chains to the C-terminal six lysine residues of the protein, which hinders 
the availability of these lysine residues for K48-linked poly
ubiquitination, a process that typically results in the degradation of p53 
[66]. Our previous research has demonstrated that TRIM56 interacts 
with IQGAP1 to enhance K63-linked ubiquitination while inhibiting 
K48-linked ubiquitination at Lys-1230, ultimately activating CDC42 and 
promoting glioma cell migration and invasion [46].

TRIM proteins as transcriptional regulators

In addition to their ubiquitination-related functions, TRIM proteins 
have been implicated in transcriptional regulation in glioma, including 
roles in histone modification, acting as transcription factors, and 
modulating mRNA stability (Fig. 3). Previous study reported that TRIM3 
exerts a suppressive effect on c-Myc transcriptional activity, resulting in 
the downregulation of c-Myc levels, and consequently, playing a tumor- 
suppressive role in glioma [63]. TRIM19 promotes SOX9 transcription 
and establishes a SOX9-STAT3-TRIM19 regulatory loop that is essential 
for maintaining glioma stem cell stemness [117]. Additionally, another 
study reported that TRIM19 modulates the level and distribution of 
H3K27me3 in GBM cells, which subsequently alters the gene expression 
network, exacerbating the malignant phenotype of GBM [118]. TRIM22 
may function as a transcription factor for CCAR1, upregulating its 
expression and thereby promoting glioma progression [115]. TRIM24 
functions as a transcription factor by binding to the promoter regions of 
SOX2 [119] and PIK3CA [77], thereby promoting their transcription and 
ultimately contributing to malignant progression and treatment resis
tance in GBM. Additionally, TRIM24 binds to H3K23ac and acts as a 
transcriptional co-activator, recruiting STAT3 and enhancing its chro
matin binding, thereby reinforcing oncogenic signaling from 
EGFR-STAT3 [14]. Another study found that TRIM24 elevates H3K27ac 
level, which enhances ATF3 transcription, leading to epigenomic and 
transcription factor network remodeling and driving Ep-GBM-like 
transformation [120]. Moreover, TRIM24 acts as a transcriptional acti
vator to upregulate PIK3CA expression, leading to activation of 
PI3K/AKT signaling [121]. TRIM28 has been demonstrated to decrease 
the stability of E-cadherin mRNA, thereby repressing its expression [81].

TRIM proteins directly interact with targets

In addition to their role as E3 ubiquitin ligases, TRIM proteins can 
directly interact with substrate proteins and modulate their functions 
through alternative mechanisms (Fig. 4). For example, the tumor sup
pressor TRIM3 is capable of directly binding to p21, thereby inhibiting 
its ability to promote the accumulation of cyclin D1-cdk4 and resulting 
in a reduction of glioma cell proliferation [40]. Another study reported 
that TRIM3 can bind to the importin nuclear transport complex, 
sequestering it in the cytoplasm and consequently inhibiting the nuclear 
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translocation of NICD, thereby suppressing the activation of NOTCH1 
signaling [122]. TRIM14 directly interacts with Dvl2 through its 
PRY/SPRY domain, enhancing Dvl2 stability [73]. This interaction 
strengthens the Wnt/β-catenin signaling pathway and promotes the 
expression of MGMT, ultimately contributing to treatment resistance in 
glioma [73]. TRIM19, also known as PML, serves as a primary substrate 
for SUMO1 SUMOylation in glioma stem cells (GSCs) [123]. SUMO1 
SUMOylation of TRIM19 increases its affinity for c-Myc, leading to 
augmented stability of c-Myc and an overall enhancement of the 
tumorigenic potential of GSCs [123]. In addition, the TRIM26 protein, 
through its C-terminal PRYSPRY domain, exhibits the capability to 
enhance the stability of SOX2 protein, independent of the RING domain 
which usually mediate ubiquitination function in TRIM proteins [16]. 
This stabilization is achieved by the direct inhibition of the interaction 
between SOX2 and WWP2, which is recognized as a genuine E3 ligase 
for SOX2 in glioblastoma stem cells [16]. TRIM37 directly interacts with 
EZH2 in glioma stem cells, which in turn leads to PTCH1 inhibition and 
enhanced glioma stem cell stemness [124]. TRIM56 enhances the sta
bility of cIAP1 [15] and FOXM1 [125] by directly inhibiting their 
ubiquitination-mediated degradation, thereby promoting the malignant 
behavior of glioma cells. TRIM59 inhibits p-STAT3 dephosphorylation 
by disrupting the STAT3-TC45 complex, thereby enhancing the STAT3 
signaling pathway [45]. These mechanisms suggest that, beyond their 
ubiquitination-related functions, TRIM proteins can directly interact 
with key oncogenic or oncostatic proteins, thereby broadly regulating 
glioma cell function.

Impact of TRIM proteins on glioma phenotypes through unspecified 
mechanisms

In the preceding sections, we investigated the roles of TRIM proteins 
in gliomas, focusing on specific molecular mechanisms, including 
ubiquitination-related functions and non-ubiquitination-regulated ac
tivities. Although a definitive mechanism through which TRIM proteins 
exert their functions has not been identified, numerous studies have 
confirmed their influence on the malignant phenotype of gliomas, which 
we summarize in this section. In summary, TRIM6 [70], TRIM14 [52,
126], TRIM28 [81,127,128], TRIM31 [82,83,129], TRIM37 [84,85], 
TRIM44 [86], TRIM47 [87,130], TRIM52 [131], TRIM65 [57], TRIM66 
[90], and TRIM67 [91] have been reported to promote malignant be
haviors in glioma cells, including proliferation, migration, invasion, 

angiogenesis, and treatment resistance. In contrast, TRIM3 [63] and 
TRIM48 [67] have been identified as tumor suppressors, playing 
inhibitory roles in the malignant behavior of glioma cells. Interestingly, 
previous studies have reported that TRIM19 overexpression inhibits 
GBM cell proliferation while preserving their invasive capacity [132]. 
Specifically, TRIM3 regulates the Musashi-Numb-Notch signaling axis 
and inhibits stemness of glioma stem cells by restoring asymmetric cell 
division [63]. The existing literature on TRIM19 is contradictory. Some 
studies suggest that TRIM19 functions as a tumor suppressor in glioma 
by inhibiting the malignant phenotype of tumor cells [44,59,133], 
whereas others report that elevated TRIM19 levels contribute to drug 
resistance and sustain the tumorigenic potential of glioma stem cells 
[74,134]. Additionally, it has been reported that TRIM31 promotes 
proliferation and invasion of glioma cells by activating the NF-κB 
pathway [83]. TRIM33 and TRIM47 have been reported to play crucial 
roles in the regulation of the Wnt/β-catenin signaling pathway [87,135]. 
TRIM31, TRIM37, and TRIM44 were reported to promote the PI3K/Akt 
signaling pathway in glioma [82,85,86,129]. TRIM56 was reported to 
mediate M2 polarization of macrophages in the glioma microenviron
ment [89]. TRIM67 was reported to affect the expression and distribu
tion of cytoskeletal proteins, and regulate the Rho 
GTPase/ROCK-mediated signaling pathway which in turn induced cell 
rounding and the appearance of a bubble morphology [91].

Targeting TRIM proteins in glioma: current progress and future 
perspectives

As previously noted, TRIM proteins exert significant influence on 
glioma through diverse mechanisms, including oncogenic and tumor- 
suppressive effects (Table S1). Therefore, targeting specific TRIM pro
teins could potentially represent a novel therapeutic approach for gli
oma patients, with considerable implications for the treatment of this 
malignant disease. Here, we present the latest advancements in the 
development of targeting TRIM proteins in glioma.

Currently, the majority of experiments aimed at targeting TRIM 
proteins in glioma are performed at the cellular level. For example, 
regulating the MKK6/p38 signaling pathway, T9sP, a novel antitumor 
peptide derived from TRIM9s, inhibits glioma cell proliferation and 
migration while promoting apoptosis [136]. Through the activation of 
the p38/MAPK pathway, Piperlongumine (PL) is capable of markedly 
reducing TRIM14 expression, which effectively inhibits glioma cell 

Fig. 3. TRIM proteins regulate the transcription of downstream target genes.

W. Wu et al.                                                                                                                                                                                                                                     Translational Oncology 58 (2025) 102419 

6 



invasion, colony generation, and sphere formation [126]. Furthermore, 
it enhances the cytotoxic effects of temozolomide [126]. The inhibitory 
effects of the compound arsenic trioxide (As2O3) on TRIM19 expression 
led to a significant reduction in tumor growth in orthotopic xenografts 
derived from glioblastoma stem cells [134]. Intriguingly, H3.3 point 
mutations in pediatric gliomas have been shown to disrupt the formation 
of promyelocytic leukemia (TRIM19) nuclear bodies, a phenomenon 
analogous to that observed in leukemias driven by PML mutations 
[137]. This disruption potentially sensitizes these glioma cells to ther
apeutic agents targeting PML bodies. Two novel selective TRIM24 an
tagonists, namely dTRIM24 and IACS-9571, can inhibit proliferation 
and invasion of several patient-derived GBM stem cells partially through 
suppressing the TRIM24-SOX2 axis [19]. An anti-TRIM28 selective 
nanobody, namely NB237, can significantly inhibit invasiveness of gli
oma cells both in vitro and in vivo [138]. A novel glucose transporter 1 
(GLUT1)-targeting curcumin derivative, designated DMC-GF, has been 
demonstrated to induce TRIM33-mediated ubiquitination and subse
quent degradation of the mitochondrial citrate carrier SLC25A1, thereby 
inhibiting the proliferation and self-renewal capacity of glioma stem 
cells [139]. Although these therapies directly targeting TRIM proteins 
have shown promising results in tumor cells, their role within the 
complex tumor microenvironment still requires further investigation.

Although substantial evidence suggests that targeting TRIM proteins 
could be an effective glioma treatment, no clinical trials have yet been 
reported in this area. Several challenges hinder the clinical translation of 
TRIM proteins, including their functional diversity. TRIM proteins play 
multiple roles in tumor progression, often exhibiting both tumor- 
promoting and tumor-suppressing functions, as seen with TRIM8 in 
gliomas [18]. Another challenge is the incomplete characterization of 
TRIM protein conformations and the potential off-target effects that may 
arise in therapeutic applications [140]. Additionally, the presence of 
complex compensatory mechanisms in glioma cells further complicates 
treatment strategies. For instance, ubiquitination-mediated degradation 
of specific TRIM proteins may be counteracted by other E3 ubiquitin 
ligases, reducing therapeutic efficacy. Finally, the intricate tumor 
microenvironment presents another hurdle. Modulating TRIM proteins 
may not only impact tumor cells but also influence immune and stromal 
cells, necessitating a deeper understanding of their broader effects 
within the glioma microenvironment [1141–143]. Despite these chal
lenges, emerging preclinical data have identified several promising 
targets within TRIM proteins. Notably, TRIM25 has been associated with 
temozolomide resistance in glioma; its inhibition could potentially 
restore chemosensitivity in GBM. In parallel, TRIM3, which is frequently 
deleted in GBM, functions as a tumor suppressor, suggesting that 

Fig. 4. TRIM proteins directly interact with and modulate target molecules.
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therapeutic strategies aimed at restoring its expression—or mimicking 
its function—could provide possible clinical benefit. These findings 
underscore the potential of TRIM25 and TRIM3 as priority candidates 
for future drug development and clinical investigation in glioma.

Conclusion

The dysregulation of multiple critical signaling pathways plays a 
pivotal role in glioma pathogenesis [144–147]. TRIM proteins are 
frequently involved as mediators in these pathways, exerting their ef
fects through several mechanisms: facilitating ubiquitination that leads 
to the degradation or functional modulation of target proteins, regu
lating the transcription of target molecules, and directly interacting with 
target proteins. These actions collectively contribute to the regulation of 
glioma cell malignancy. Consequently, targeting TRIM proteins to 
restore normal signaling pathways represents a promising therapeutic 
strategy for glioma.
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