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Abstract 
Epidemiological studies have demonstrated that inflammatory cytokines are associated with cancer development. However, 
the causal relationship between inflammatory cytokines and glioblastoma remains unclear. We used a two-sample Mendelian 
randomization approach to determine the potential causal effects of inflammatory cytokines on glioblastoma. Genome-wide 
association study summary statistics for 41 inflammatory cytokines were obtained from the University of Bristol database, 
and 91 inflammatory cytokines were acquired from the genome-wide association study catalog database. Genetic data on 
glioblastoma were downloaded from the FinnGen consortium (R10). Mendelian randomization analysis and Bayesian weighted 
Mendelian randomization analysis were performed to investigate the causal relationship between inflammatory cytokines and 
glioblastoma risk. A combination of Mendelian randomization (MR)-Egger, MR-Pleiotropy Residual Sum and Outliers, and Radial 
MR methods was employed to assess horizontal pleiotropy, which is a potential bias in MR studies. The Cochran Q test was used 
to quantify the degree of heterogeneity. Finally, we conducted a comprehensive meta-analysis to confirm the robustness of our 
findings. Increased levels of tumor necrosis factor β (odds ratio [OR] = 1.597, 95% CI: 1.143–2.230, P = .006) and interleukin-10 
(OR = 1.452, 95% CI: 1.059–1.992, P = .021) were associated with an increased risk of glioblastoma. Conversely, higher levels 
of circulating fibroblast growth factor 21 (OR = 0.456, 95% CI: 0.276–0.754, P = .002) and macrophage inflammatory protein 1a 
(OR = 0.743, 95% CI: 0.558–0.990, P = .042) were associated with a decreased risk of glioblastoma. No significant causal effect 
on inflammatory cytokines from glioblastoma was detected, and no significant heterogeneity in instrumental variables or horizontal 
pleiotropy was observed. Our findings indicate that specific inflammatory cytokines may play a role in glioblastoma development, 
acting as either protective factors or risk factors. This offers valuable insights into the disease mechanism and suggests that 
targeting these cytokines could be a potential strategy for glioblastoma prevention and treatment.

Abbreviations: BWMR = Bayesian weighted Mendelian randomization, CCL3 = chemokine (C-C motif) ligand 3, FGF21 
= fibroblast growth factor 21, GBM = glioblastoma, GWAS = genome-wide association study, IL-10 = interleukin-10, IVs = 
instrumental variables, IVW = inverse variance weighted, LD = linkage disequilibrium, MR = Mendelian randomization, OR = odds 
ratio, SNPs = single nucleotide polymorphisms, TNFα = tumor necrosis factor alpha, TNFβ = tumor necrosis factor beta.

Keywords: genome-wide association study, glioblastoma, inflammatory cytokines, Mendelian randomization, tumor 
microenvironment

1. Introduction
Glioblastoma (GBM), a grade instrumental variable (IV) tumor, 
is the most common and aggressive brain tumor. It originates 
from glial cells of the central nervous system and accounts 
for approximately 49% of malignant brain tumors.[1] Despite 
advances in surgical resection, radiotherapy, chemotherapy, and 
tumor treatment (TTFields), the prognosis for patients with 
GBM remains extremely poor,[2] with a nearly 100% recur-
rence rate and a median overall survival of approximately 20 

months.[3] Only a limited number of patients are capable of 
surviving beyond the age of 5 years.[4] Radiation exposure and 
some rare familial cancer syndromes such as neurofibromatosis 
type 1,[5] Lynch syndrome,[6] and Li-Fraumeni syndrome,[7] are 
associated with an increased risk of GBM. However, the exact 
cause of GBM remains unclear. Early identification and prompt 
treatment are crucial for improving the outcomes of patients 
diagnosed with GBM. The medical community continues to pri-
oritize research on the prevention of GBM to increase survival 
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rates and enhance the quality of life of individuals afflicted by 
GBM.

Increasing evidence suggests that inflammatory cytokines 
play a crucial role in the development and progression of tumors 
and have a significant impact on the host antitumor response.[8,9] 
These proteins can be categorized into different groups based 
on their roles, such as interleukins, interferons, chemokines, the 
tumor necrosis factor superfamily, colony-stimulating factors, 
and growth factors. Understanding the intricate connection 
between inflammatory cytokines and cancer has opened new 
avenues for investigation and potential therapeutic approaches. 
Given the significant impact of inflammatory cytokines on 
tumor development and the host antitumor response, there 
is increasing interest in targeting these molecules as a poten-
tial strategy for cancer treatment. Researchers are exploring 
ways to block pro-tumor cytokines and enhance the antitumor 
immune response. Moreover, some studies have demonstrated 
that altering the levels of certain cytokines within the tumor 
microenvironment can enhance the efficacy of existing antican-
cer therapies.

Mendelian randomization (MR) is a powerful epidemiolog-
ical research method that can provide valuable insights into 
causal relationships between exposures and outcomes by using 
genetic variants as IVs.[10,11] The use of genetic variation as a 
proxy for exposure in MR circumvents the limitations of tra-
ditional observational studies, allowing researchers to assess 
the causal effects of an exposure on an outcome without the 
confusion caused by reverse causality or residual confusion.[12]

In this study, we extracted validated genetic variants from 
2 published genome-wide association study (GWAS) summary 
datasets of 41 inflammatory cytokines[13] and 91 inflammatory 
cytokines.[14] We then performed MR analyses to test whether 
a range of circulating inflammatory cytokines could be caus-
ally associated with the risk of GBM (FinnGen R10) at onset. 
If MR studies identify certain inflammatory cytokines as having 
a causal relationship with GBM, this may help to develop new 
prevention and treatment strategies.

2. Methods

2.1. Study design

In our study, a bidirectional two-sample MR analysis was con-
ducted to evaluate the causal relationships between 132 inflam-
matory cytokines and GBM, based on summary-level datasets 
from large-scale GWASs.

We used a two-sample MR analysis to evaluate the causal 
relationships between 132 circulating inflammatory cytokines 
and GBM. In the forward analysis, we used 132 inflammatory 
cytokines from the 2 databases as exposures and GBM as the 
outcome to explore the possibility that different inflammatory 
cytokines cause GBM. We evaluated the causal relationship 
between GBM and each inflammatory cytokine using a reverse 
analysis. Single nucleotide polymorphisms (SNPs) significantly 
associated with exposure were used as IVs.[15,16] The selected IVs 
must satisfy 3 fundamental assumptions.[17]

	 (1)	Relevance assumption: IVs are strongly correlated with 
exposure.

	 (2)	Independent assumption: IVs were not associated with 
any known confounders identified based on established 
biological and epidemiological knowledge regarding 
potential factors influencing the relationship between 132 
inflammatory cytokines and GBM.

	 (3)	Exclusion restriction assumption: There is no correlation 
between IVs and outcomes, except for their possible con-
nection with exposure.

The study design is illustrated in Fig. 1. We strictly adhered 
to the recommendations outlined in the Strengthening 

the Reporting of Observational Studies in Epidemiology 
Mendelian Randomization (STROBE-MR) framework (Table 
S1, Supplemental Digital Content, https://links.lww.com/MD/
O1000).[18]

2.2. Data sources

All IVs utilized in this study were derived from the summaries 
of GWASs. The data on 41 inflammatory cytokines were derived 
from a meta-analysis including 8293 Finnish individuals from 
3 separate population-based cohorts [the Cardiovascular Risk 
in Young Finns Study (YFS), FINRISK 1997, and FINRISK 
2002], which was published in 2017 by Ahola-Olli et al.[13] The 
University of Bristol provides publicly available GWAS sum-
mary statistics for each inflammatory cytokine (https://data.
bris.ac.uk/data/dataset). GWAS summary statistics can also be 
downloaded from the IEU Open GWAS (accession numbers 
from ebi-a-GCST004420 to ebi-a-GCST004460) at https://
gwas.mrcieu.ac.uk (Table S2, Supplemental Digital Content, 
https://links.lww.com/MD/O1000). The 91 inflammatory cyto-
kines under investigation were derived from a meta-analysis 
involving 11 cohorts of 14,824 participants of European ances-
try published in 2023 by Jing Hua Zhao et al.[14] The complete 
GWAS summary statistics for each cytokine were obtained from 
the OpenGWAS database (https://www.ebi.ac.uk/gwas/) under 
accession numbers GCST90274758-GCST90274848 (Table 
S3, Supplemental Digital Content, https://links.lww.com/MD/
O1000). The FinnGen consortium provided summary statistics 
for GBM at the genus level (https://finngen.gitbook.io/documen-
tation/, Documentation for the R10 release). This study included 
314,193 European individuals, of whom 253 were patients with 
GBM and 314,446 were controls. Population selection ensured 
the absence of overlap between the exposure and outcome data-
sets. The details of the GWASs are summarized in Table 1.

2.3. Instrument selection

To ensure that SNPs selected as IVs were strongly associated 
with exposure, we implemented the following steps based on the 
3 core assumptions of the MR analysis.

First, the genome-wide significance criterion of P < 5 × 10‐8 
was employed to identify SNPs significantly linked to both 
GBM and inflammatory cytokines. As only a few SNPs were 
found for certain inflammatory cytokines and GBM when 
they were considered for exposure, we adopted a higher cutoff 
(P < 1 × 10‐5).[19]

Second, SNPs that showed potential linkage disequilib-
rium (LD) with an r2 value of ≥0.001 and an LD distance of 
<10,000 kb were excluded to ensure the independence of SNPs 
using the clustering algorithm in the PLINK software (version 
v1.90) (https://www.cog-genomics.org/plink/1.9/).

Third, the LDtrait website (https://ldlink.nih.gov/?tab=ldtrait) 
was used to identify disease-related SNPs and to exclude SNPs 
associated with potential confounders.[20]

Finally, we calculated the F-statistics for each SNP using the 
established formula.[21] The R2 value, which is indicative of the 
proportion of variance in the exposure variable explained by IV, 
was derived using the following formula:

R2 = 2× EAF× (1− EAF)× β2

The F-statistic, which further assesses the strength of the asso-
ciation between SNP and exposure, was calculated as follows:

F =
R2 × (N − 2)

1− R2

Here, EAF denotes the effect allele frequency, β is the effect 
size of the association between the SNP and inflammatory 
cytokine, and N is the sample size of the GWAS from which 

https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
https://data.bris.ac.uk/data/dataset
https://data.bris.ac.uk/data/dataset
https://gwas.mrcieu.ac.uk
https://gwas.mrcieu.ac.uk
https://links.lww.com/MD/O1000
https://www.ebi.ac.uk/gwas/
https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
https://finngen.gitbook.io/documentation/
https://finngen.gitbook.io/documentation/
https://www.cog-genomics.org/plink/1.9/
https://ldlink.nih.gov/?tab=ldtrait


3

Xuan et al.  •  Medicine (2025) 104:22� www.md-journal.com

Figure 1.  The study design of our study. (A) Three instrumental variable assumptions for Mendelian Randomization analysis; (B) the study design of two sample 
MR analysis.

Table 1

Baseline information for inflammatory cytokines and glioblastoma.

Traits Catlog ID Population Year Author PMID DOI

91 inflammatory proteins GCST90274758~GCST90274848 European 2023 Zhao Jing Hua 37563310 10.1038/s41590-023-01588-w
41 inflammatory proteins ebi-a-GCST004420~ebi-a-GCST004460 European 2021 Marita Kalaoja 33491305 10.1002/oby.23060
Phenotype Consortium Population Year Cases Sample size Websites
Brain glioblastoma FinnGen (R10) European 2023 253 314,446 https://www.finngen.fi/en

https://www.finngen.fi/en
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the SNPs were derived. SNPs with an F-statistic exceeding the 
threshold of 10 were deemed to have a strong association with 
exposure and, therefore, qualified as suitable IVs for MR analy-
sis. We further refined our selection by conducting a Steiger test 
after excluding weak IVs.

2.4. MR analysis and Bayesian weighted Mendelian 
randomization analysis

In our investigation of the genetic causality between inflamma-
tory cytokines and GBM based on GWAS data, we conducted a 
two-sample MR analysis using a variety of commonly employed 
MR methodologies. The MR–Egger,[22] weighted median,[23] 
inverse variance weighted (IVW),[24,25] weighted mode,[26] con-
strained maximum likelihood-based Mendelian randomiza-
tion[27] and robust adjusted profile score[28] models were used. 
The IVW method, which is known for its efficiency and high 
statistical power, was used to evaluate causal associations. The 
IVW findings were considered to be suggestive of a meaningful 
association if they achieved statistical significance (P < .05) and 
were supported by a consistent trend across other approaches 
in instances where other methods, such as the weighted median 
method and the MR-Egger method, failed to produce meaning-
ful outcomes.

Bayesian weighted Mendelian randomization (BWMR) anal-
ysis serves as a valuable complement to traditional two-sample 
MR analysis. BWMR analysis enhances the stability and reliabil-
ity of the final results using a Bayesian framework. Moreover, 
BWMR analysis enhances the conventional two-sample MR by 
providing a more robust estimation in the presence of heteroge-
neity and potential violations of the assumptions underpinning 
the IV analysis.[29]

By employing a comprehensive array of MR methods, we 
assessed the genetic causality between inflammatory cytokines 
and GBM from multiple perspectives, ensuring that our research 
findings are both accurate and robust.

2.5. Sensitivity analyses

The Cochrane Q test was used to quantitatively evaluate hetero-
geneity among the Cochrane Q test (P < .05).[25] Furthermore, 
we applied the MR-Egger intercept test (P < .05) to examine 
whether there was evidence of directional pleiotropy within the 
IVs.[22] A significant deviation in the intercept from zero indi-
cates directional pleiotropy.

Furthermore, we employed the MR-Pleiotropy Residual Sum 
and Outlier method[30] to detect and eliminate outliers that 
could introduce horizontal pleiotropy. In the event that outliers 
were identified, the SNPs associated with them were excluded 
from subsequent analyses.

Our research utilized an innovative methodology by utiliz-
ing modified second-order weights to identify and subsequently 
eliminate outliers in the MR analysis. This was accomplished by 
utilizing the “RadialMR” package (https://github.com/WSpiller/
RadialMR) in the R programming environment. This method 
improves the robustness of the MR analysis by minimizing the 
potential impact of outliers, which could otherwise skew the 
results and lead to biased estimates of the causal effect.[31]

To identify potentially heterogeneous SNPs, we conducted 
leave-one-out sensitivity analysis. This approach involved sys-
tematically removing each SNP from the analysis and observing 
its impact on the overall results.

2.6. Meta-analysis

Finally, we evaluated the same inflammatory cytokine results 
from both databases after screening based on the “meta” pack-
age to confirm the reliability of the MR results. A random- 
effects model was used when the heterogeneity of the results 

was significant (I2 ≥ 50% or P < .05), and a fixed-effects model 
was used when the results were not significant (I2 < 50% and 
P ≥ .05).[19,32]

All the statistical analyses were performed using R ver-
sion 4.3.3 (https://www.r-project.org/), along with the 
“TwoSampleMR,” “RadialMR,” and “MRPRESSO” packages. 
The data were visualized using the forestploter R package. The 
outcomes of the MR analysis were quantified using odds ratios 
with 95% confidence intervals, and a P value <.05 was consid-
ered to indicate statistical significance.

2.7. Ethics statement

Our research relied entirely on publicly available GWAS data 
that had already received ethical approval prior to its release. 
Because this study did not involve the collection of new data, it 
was not necessary to obtain additional ethical approval.

3. Results

3.1. The causal effect of inflammatory proteins on GBM

3.1.1. Selection of IVs.  After rigorous selection and 
harmonization of IVs, 2330 SNPs linked to 91 inflammatory 
cytokines and 561 SNPs linked to 41 inflammatory cytokines 
were used as instruments for subsequent analysis, with all 
computed F-statistics above 10. Each selected IV had an 
F-statistic > 10, indicating strong IVs and absence of weak 
instrumental bias in the study (Tables S4 and S5, Supplemental 
Digital Content, https://links.lww.com/MD/O1000).

3.1.2. MR analysis and BWMR analysis.  MR analysis of 132 
inflammatory cytokines as exposure variables in GBM revealed 
2 inflammatory proteins with a causal relationship with GBM 
(Tables S6 and S7, Supplemental Digital Content, https://links.
lww.com/MD/O1000). The primary results of the main MR 
analyses are shown in Figs. 2–4.

According to the IVW results, elevated levels of fibroblast 
growth factor 21 (odds ratio [OR] = 0.456, 95% CI: 0.276–
0.754, P = .002) were associated with a reduced risk of GBM. In 
addition, increased levels of tumor necrosis factor β (OR = 1.597, 
95% CI: 1.143–2.230, P = .006) may be linked to an increased 
risk of GBM. This result was corroborated by the BWMR analy-
sis results for fibroblast growth factor 21 (FGF21) (OR = 0.444, 
95% CI: 0.258–0.766, P = .004) and tumor necrosis factor beta 
(TNF-β) (OR = 1.624, 95% CI: 1.140–2.313, P = .007). Other 
supplementary methods for MR analysis corroborated similar 
trends and findings related to the impact of these inflammatory 
proteins on GBM.

3.1.3. Sensitivity analysis.  In this study, a series of sensitivity 
analyses was conducted to evaluate the pleiotropy and 
heterogeneity of the MR results. Initially, Cochran Q test 
revealed no significant heterogeneity among the effect sizes of 
the included SNPs across the different studies, indicating good 
consistency in our analytical outcomes (Table 2). This implies 
that our results are uniform, thus enhancing the credibility of 
our findings. Subsequently, the MR-Egger intercept test was 
used to assess the presence of directional gene pleiotropy. 
The results did not indicate significant pleiotropy, reinforcing 
the notion that our IVs were generally unrelated to potential 
confounders, thereby supporting the trustworthiness of our 
study’s results (Tables S8 and S9, Supplemental Digital Content, 
https://links.lww.com/MD/O1000). Furthermore, utilizing 
the MR-Pleiotropy Residual Sum and Outlier method and 
Radial MR analysis, we identified 142 outliers within our 
dataset (Tables S10 and S11, Supplemental Digital Content, 
https://links.lww.com/MD/O1000). To ensure the robustness 
and reliability of our MR analysis, we excluded these outliers 

https://github.com/WSpiller/RadialMR
https://github.com/WSpiller/RadialMR
https://www.r-project.org/
https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
https://links.lww.com/MD/O1000
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and subsequently reevaluated the genetic IVs in relation to 
the exposure and outcome variables. For example, when we 
investigated the causal link between interleukin-10 (IL-10) 
(from the EBI database) and GBM, the radial MR method 
successfully identified an outlier (SNP: rs4655953) (Fig. 5). The 
advantage of radial MR analysis lies in its ability to adapt to 
complex patterns in data and provide a flexible way to address 
pleiotropy issues, thereby enhancing the reliability and accuracy 
of our results. In addition, an approximately symmetric funnel 

plot corroborated our findings, suggesting the robustness of our 
results. Finally, we performed a leave-one-out analysis of the 
data, and no specific SNPs were found to drive the association 
between inflammatory cytokines and GBM. The results of the 
analysis are presented as a forest plot (Fig. 6).

3.1.4. Meta-analysis.  To further minimize the bias of the 
results due to different data sources, we performed a meta-
analysis of the results of the same inflammatory cytokines 

Figure 2.  Forest plot for the significant associations. We mainly used the IVW method and BWMR. BWMR = Bayesian weighted Mendelian randomiza-
tion; cML-MR = constrained maximum likelihood-based Mendelian randomization; FGF21 = fibroblast growth factor 21; IL10 = interleukin-10; IVW = inverse 
variance weighted; MIP 1a = macrophage inflammatory protein 1a; MR = Mendelian randomization; MRPresso = MR-pleiotropy residual sum and outliers; 
RAPS = Robust adjusted profile score; TGF beta = tumor necrosis factor β.
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from different database sources. Finally, 2 inflammatory 
cytokines, IL-10 (OR = 1.452, 95% CI: 1.059–1.992, 
P = .021) and MIP-1a (OR = 0.743, 95% CI: 0.558–0.990, 
P = .042), were screened out. The results are shown as forest 
plots (Fig. 7).

3.2. The causal effect of GBM on inflammatory proteins

To further investigate the reverse causal effects of GBM on 132 
inflammatory cytokines, we performed reverse MR analysis 
conducted primarily using the IVW method. In this analysis, we 
identified only 8 SNPs that demonstrated a robust association 

Figure 3.  Heatmap of Mendelian randomization analysis of the causal effect of 91 inflammatory cytokines on glioblastoma. ***P < .001; **0.001 ≤ P < .01; 
*0.01 ≤ P < .05. BWMR = Bayesian weighted Mendelian randomization; cML-MR = constrained maximum likelihood-based Mendelian randomization; 
IVW = inverse variance weighted; RAPS = robust adjusted profile score.
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Figure 4.  Heatmap of Mendelian randomization analysis of the causal effect of 41 inflammatory cytokines on glioblastoma. ***P < .001; **0.001 ≤ P < .01; 
*0.01 ≤ P < .05. BWMR = Bayesian weighted Mendelian randomization; cML-MR = constrained maximum likelihood-based Mendelian randomization; 
IVW = inverse variance weighted; RAPS = robust adjusted profile score.

Table 2 

Heterogeneity and pleiotropy analyses.

Exposure

Heterogeneity test Horizontal pleiotropy test MRPresso

Cochrane Q MR-Egger intercept MR-PRESSO global MR analysis

method Q df P Intercept P RSSobs P Causal Estimate P

FGF21 MR Egger 21.424 23 .555 0.010 .856 23.073 .646 ‐0.786 .004
GCST90274788 IVW 21.457 24 .612
IL10 MR Egger 24.892 28 .634 ‐0.052 .325 27.479 .655 0.319 .174
GCST90274795 IVW 25.896 29 .631
MIP 1a MR Egger 18.715 27 .880 ‐0.040 .380 21.172 .876 ‐0.095 .564
GCST90274821 IVW 19.510 28 .882
TGFβ MR Egger 6.971 6 .324 0.010 .915 8.635 .514 0.468 .029
ebi-a-GCST004425 IVW 6.986 7 .430
MIP 1a MR Egger 10.929 13 .617 0.092 .224 14.432 .582 ‐0.383 .067
ebi-a-GCST004434 IVW 12.557 14 .562
IL10 MR Egger 11.365 13 .580 0.044 .445 14.319 .615 0.416 .056
ebi-a-GCST004444 IVW 11.984 14 .608

FGF21 = fibroblast growth factor 21, IL10 = interleukin-10, IVW = inverse variance weighted, MIP 1a = macrophage inflammatory protein 1a, MR = Mendelian randomization, MRPresso = MR-Pleiotropy 
Residual Sum and Outliers, TGFβ = tumor necrosis factor β.
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with GBM. Only 90 inflammatory cytokines (from the EBI 
database) and 28 inflammatory cytokines (from the University 
of Bristol database) were successfully detected via MR analy-
sis using the IVW method (Tables S12 and S13, Supplemental 
Digital Content, https://links.lww.com/MD/O1000). Ultimately, 
our findings did not provide evidence that GBM significantly 
influences the levels of these cytokines (Figs. 8 and 9).

4. Discussion
In this study, we explored the relationship between inflamma-
tory cytokines and GBM based on genetic data from publicly 
available databases using MR analysis. Understanding the 
causal link between the levels of inflammatory cytokines and 
GBM is crucial for determining the underlying causes of this 
disease and for devising effective preventative and curative strat-
egies. Further analysis revealed that, among the 132 inflamma-
tory cytokines, low levels of FGF21 and high levels of TNF-β 
were associated with a greater risk of GBM. In addition, the 
results of the meta-analysis indicated that 2 additional inflam-
matory cytokines were associated with the risk of GBM. Low 
levels of MIP-1a and high levels of IL-10 correlated with a 
greater likelihood of developing GBM. In the reverse analysis, 

no causal relationship between GBM and inflammatory cyto-
kines was found.

The tumor microenvironment plays a crucial role in cancer 
initiation and progression.[33] Inflammatory cytokines, which 
are key components of the tumor microenvironment, are pro-
duced by various cell types, including tumor cells, immune cells, 
and stromal cells.[34] Dysregulation of these genes can lead to 
chronic inflammation, which can either promote[35] or inhibit 
tumor growth. Understanding the complex interplay between 
inflammatory cytokines and the tumor microenvironment is 
essential for developing targeted therapies that modulate the 
microenvironment and improve patient outcomes.[36] MR stud-
ies have been applied to investigate the causal relationships 
between inflammatory cytokines and various cancers, including 
prostate cancer, breast cancer, colorectal cancer, lung cancer, and 
diffuse large B-cell lymphoma.[37–40]

FGF21 is a multifaceted hormone with a complex role in 
the regulation of metabolism, energy expenditure, and glucose 
homeostasis.[41] However, its role in cancer remains complex 
and context dependent.[42] Several recent studies have shown 
that FGF21 is associated with the development and progression 
of cancers, such as liver cancer,[43–46] lung cancer,[47] thyroid can-
cer,[48] and ovarian cancers.[49] For example, in prostate cancer, 

Figure 5.  Outliers identified by the radial MR analysis. (A) Fibroblast growth factor 21 on glioblastoma; (B) interleukin-10 on glioblastoma (91 cytokines); (C) 
macrophage inflammatory protein 1a on glioblastoma (91 cytokines); (D) tumor necrosis factor β on glioblastoma; (E) macrophage inflammatory protein 1a on 
glioblastoma (41 cytokines); (F) interleukin-10 on glioblastoma (41 cytokines). The purple portions signify the identified outliers by IVW and MR-Egger. The green 
portions signify the identified outliers by IVW.

https://links.lww.com/MD/O1000
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Figure 6.  Results of the causal relationship between fibroblast growth factor 21, tumor necrosis factor β and glioblastoma. (A) Scatter plots of the causal rela-
tionship between fibroblast growth factor 21 and glioblastoma at using 7 different MR methods. (B) Funnel plots of fibroblast growth factor 21 on glioblastoma; 
(C) leave-one-out sensitivity analysis of fibroblast growth factor 21 on glioblastoma; (D) scatter plots of the causal relationship between tumor necrosis factor 
β and glioblastoma at using 7 different MR methods; (E) funnel plots of tumor necrosis factor β on glioblastoma; (F) leave-one-out sensitivity analysis of tumor 
necrosis factor β on glioblastoma.

Figure 7.  The forest plot shows the 2 sets of results from the analysis of inflammatory cytokines on glioblastoma using meta-analysis methods combined 
to assess the reliability of positive or potentially positive results. (A) Macrophage inflammatory protein 1a on glioblastoma. (B) Interleukin-10 on glioblastoma.
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FGF21 promotes autophagy in LNCaP cells by inhibiting the 
phosphatidylinositol 3-kinase–Akt kinase–mammalian target 
of rapamycin (PI3K–Akt–mTOR) pathway. It also inhibits the 
migration and invasion of prostate cancer cells.[50] However, 
its role in GBM has not been reported to date, and our study 
reveals for the first time the importance of FGF21 as a key factor 

in GBM. This finding provides a new outlook for the potential 
clinical application of FGF21 drugs for the treatment of GBM, 
which should be investigated in future studies.

TNF-β, also called lymphotoxin-α, a member of the tumor 
necrosis factor superfamily, is a cytokine produced by lympho-
cytes.[51,52] Although much is known about the importance of 

Figure 8.  Forest plot of MR analysis of causal effects of glioblastoma on 90 inflammatory cytokines from EBI database (91 cytokines). MR = Mendelian 
randomization.
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tumor necrosis factor alpha (TNF-α) in carcinogenesis, data on 
TNF-β are very limited. Similar to TNF-α, several studies have 
demonstrated that TNF-β can regulate proliferation, survival, 
invasion, migration, and colony formation in colorectal and 
ovarian cancers.[53,54] The potential mechanism is that TNF-β 
activates the NF-κB signaling pathway to induce cancer cell 
proliferation and invasion.[55–57] Several reports have shown 
that resveratrol blocks NF-κB activation, inhibits the cell cycle, 
and induces apoptosis in various tumors and colorectal cancer 
cells.[58,59] Furthermore, Buhrmann demonstrated that Calebin 
A component of Curcuma longa, could inhibit TNF-β-induced 
NF-κB-mediated malignancy in CRC cells in vitro.[60] Our find-
ings reveal a causal relationship between TNF-β and GBM, and 
the use of TNF-β blockade strategies may be a potential treat-
ment for GBM.

Chemokines, as cardinal regulators of immune cell traffick-
ing, play a pivotal role in inflammation and orchestrate the intri-
cate immune landscape within the tumor microenvironment.[61] 
Analogous to their role in inflammation, chemokines mediate 
the recruitment of immune cells to the tumor niche, exert-
ing both direct and indirect effects on tumor cells.[62] MIP-1a 
(Chemokine (C-C motif) ligand 3 [CCL3])[63] is a small secreted 
protein belonging to the C-C chemokine subfamily.[64,65] Its 
impact on tumorigenesis is complex, exhibiting both protum-
origenic and antitumorigenic effects, depending on the context. 
They can promote angiogenesis, tumor growth, and metasta-
sis by attracting immunosuppressive cells or by stimulating 
the release of growth factors. Conversely, they can also recruit 
immune effector cells to the tumor microenvironment, poten-
tially enhancing antitumor immunity. The chemotactic effect of 
CCL3 enhances antitumor immunity by promoting dendritic cell 
homing to the tumor microenvironment.[66] Additionally, CCL3-
mediated NK cell recruitment is crucial for further bolstering 

the CD8-positive antitumor response.[67] This study revealed 
the genetic correlation between MIP-1a and GBM, providing 
valuable insights for future research on the pathogenesis and 
pharmacological intervention of GBM.

The number of studies on the role of IL-10 in tumor diseases 
has gradually increased; however, its role in tumorigenesis and 
progression remains highly controversial.[68] Some studies have 
shown that IL-10 may also exert antitumor effects through cer-
tain mechanisms, such as promoting CD8+ T-cell proliferation 
and activation, and enhancing their antitumor ability.[69] Li Tang 
et al demonstrated that CAR-T cells expressing IL-10 resist 
dysfunction and mediate durable clearance of solid and meta-
static tumors, including colon, breast, melanoma, and pancre-
atic cancers.[70] However, other studies have shown that elevated 
IL-10 levels suppress T cell-mediated killing of tumor cells and 
that blocking IL-10 in animal models improves the ability of 
the immune system to eliminate tumor cells.[71,72] Additionally, 
research indicates that IL-10 can create an immunosuppressive 
environment by inhibiting the activation of antigen-presenting 
cells (APCs), leading to inhibitory effects on T cells and ulti-
mately inducing tumor immune escape.[73] Our study demon-
strated that higher IL-10 levels promote GBM development. 
However, the role of IL-10 in the tumor microenvironment 
is complex and multifaceted. However, further studies are 
required to elucidate the mechanism by which IL-10 promotes 
GBM growth.

In this study, we investigated the causal relationship between 
inflammatory cytokines and GBM using an integrated approach 
involving MR analysis and BWMR. MR analysis is favored for 
its superior ability to circumvent confounding factors and mit-
igate the impact of ethical biases compared with conventional 
epidemiological statistical methods, thereby enhancing the reli-
ability of our findings over those of prior research. Furthermore, 

Figure 9.  Forest plot of MR analysis of causal effects of glioblastoma on 28 inflammatory cytokines from University of Bristol database (41 cytokines). MR = 
Mendelian randomization.
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to bolster the robustness of our study outcomes, we selected the 
most recent and extensive GWAS data from Open GWAS data-
bases, which feature the largest sample cohorts available.

Although this investigation offers valuable insights into the 
potential causal associations between inflammatory cytokines 
and GBM, it is essential to recognize several limitations. First, 
the sample size for the GBM GWAS data in our analysis was 
relatively modest, which may have compromised the statistical 
power of our MR approach. A smaller sample size can lead 
to wider confidence intervals and a reduced capacity to detect 
modest causal effects, potentially resulting in over- or underesti-
mation of the effect sizes. To address the strength of the IVs, we 
employed the F-statistic, including only IVs with values exceed-
ing 10 in subsequent analyses. Although this step enhances the 
reliability of our results by mitigating weak instrument bias, it 
does not fully eliminate the limitations imposed by the modest 
sample size. Consequently, these findings should be cautiously 
interpreted. Second, the broader threshold applied in our anal-
ysis could have increased the risk of false positives. Third, our 
findings should be interpreted with caution because of the com-
plexity of cytokine signaling pathways and the limitations of 
our sample size. Validation in a larger cohort is essential to con-
firm these results. Fourth, all the GWAS data in this study were 
derived from European populations. Although this approach 
has minimized the confounding effects of population stratifi-
cation, it also underscores the necessity of validating causal 
conclusions in other non-European cohorts, such as those of 
Asian descent. Finally, larger-scale GWAS and more compre-
hensive MR studies are required to enhance the robustness and 
applicability of our findings. Incorporating multi-omics data, 
such as proteomics and transcriptomics, could further clarify 
the mechanistic contributions of inflammatory cytokines in 
GBM, providing a stronger foundation for these preliminary 
observations.

5. Conclusion
In conclusion, the MR analysis revealed a causal relationship 
between specific inflammatory cytokines and GBM. Specifically, 
TNF-β and IL-10 have been identified as risk factors for GBM, 
whereas FGF21 and MIP-1a are recognized as protective factors 
against this disease. Notably, a reverse investigation revealed 
that GBM is not associated with elevated levels of inflammatory 
cytokines. These targeted inflammatory cytokines may provide 
a promising strategy for the treatment and prevention of GBM. 
Further research is needed to confirm these findings and eluci-
date the underlying biological mechanisms involved.
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