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Abstract

Temozolomide (TMZ) remains foundational in the management of adult-type diffuse
gliomas in general, and glioblastoma specifically. However, its efficacy harbors an evo-
lutionary trade-off. TMZ drives its cytotoxicity through generating O°-methylguanine
lesions, especially active in MGMT-silenced, mismatch repair (MMR)-proficient tumors. By
selecting for acquired MMR-deficient subclones, often via MSH6 inactivation, this process
escalates into a hypermutator phenotype, generating thousands of de novo alterations.
This is a hallmark of the mutational signature known as SBS11, characterized by C>T
transitions, which is associated with TMZ treatment. The hypermutator phenotype drives
heterogeneity, therapeutic resistance, spatial diversification, and distant recurrence. Despite
harboring a mutational burden comparable to melanoma and lung cancer, TMZ-induced
hypermutation does not sensitize gliomas to immune checkpoint blockade. This resistance
reflects the profoundly immunosuppressive brain microenvironment, impaired antigen
presentation, marked transcriptional plasticity, and perhaps also the frequent use of corti-
costeroids. Emerging strategies aim to exploit vulnerabilities created by TMZ-mediated
genomic instability, including PARP, ATR, WEE1, and AURKA inhibition; alternative alky-
lators; metabolic rewiring; and G-quadruplex stabilization. Notably, the real-time detection
of evolving mutational signatures via CSF-based liquid biopsies may enable adaptive
therapy before radiographic progression. By reframing TMZ as a potent evolutionary
agent rather than a conventional chemotherapy, this review synthesizes recent mechanistic
insights and translational opportunities to guide a next-generation, evolution-informed
treatment paradigm for glioma.
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1. Introduction

Adult-type diffuse gliomas are primary brain tumors, typically molecularly classified
into three subtypes: glioblastoma, IDH-wildtype (CNS WHO grade 4); oligodendroglioma,
IDH-mutant, and chromosome 1p/19q co-deletion (CNS WHO grades 2-3); and astrocy-
toma, IDH-mutant (CNS WHO grades 2—4); each of which can be further classified into
molecular subtypes [1]. Gliomas are associated with high morbidity and mortality rates,
with glioblastoma standing as the most aggressive and lethal primary brain tumor in adults,
with a dismal median overall survival (OS) of approximately 15 months despite maximal
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therapeutic intervention [1-5]. The current standard of care (SoC) for glioblastoma and high-
risk IDH-mutant gliomas, established by the landmark Stupp article, combines maximal
safe surgical resection with concurrent radiotherapy and temozolomide (TMZ) chemother-
apy, followed by adjuvant TMZ maintenance therapy [1,5,6]. TMZ, an orally bioavailable
alkylating agent with excellent central nervous system penetration, became the corner-
stone of first-line chemotherapy for glioblastomas and progressive lower-grade gliomas.
O°-methylguanine-DNA methyltransferase (MGMT) promoter methylation, present in
approximately 45% of IDH-wildtype glioblastomas and 50-70% of IDH-mutant gliomas,
emerged as the key predictive biomarker for treatment response [7-12]. Yet this therapeutic
success harbored an evolutionary reckoning. The paradigm shift began with the recognition
that TMZ is not merely a cytotoxic agent but a potent mutagen that fundamentally reshapes
tumor evolutionary trajectories [13,14]. Whole-genome sequencing (WGS) revealed an
elevated tumor mutational burden (TMB) after TMZ treatment, defined by a distinctive
mutational footprint, or mutational signature SBS11, characterized by C>T transitions at
GpC dinucleotides [15-17]. This mutagenesis process has profound implications for tumor
evolution, therapy resistance, and, in theory, potentially increasing neoantigen production
and immunotherapy response [18-20].

In this review, we provide an overview of the mechanistic understanding of TMZ-
induced mutagenesis, dissect the clinical implications of the hypermutator phenotype with
a particular focus on immunotherapy consequences, and propose therapeutic opportunities
arising from treatment-driven evolution. We examine biomarkers for predicting and
monitoring hypermutation, evaluate emerging DNA damage response (DDR)-targeted and
immunotherapy strategies, and explore evolutionary-informed treatment paradigms. By
reframing TMZ from a standard chemotherapy to a driver of tumor evolution, evolution-
aware management of brain malignancies might be beneficial.

2. Molecular Mechanisms of the TMZ Signature
2.1. The Mechanistic Core: DNA Alkylation, MGMT, and Mismatch Repair

TMZ is an oral alkylating agent of the imidazotetrazine class and exerts its cytotoxic ef-
fects through DNA alkylation, generating multiple adducts that include N”-methylguanine
(70%), N3—methyladenine (9%), and the highly mutagenic 06—methy1guanine (O%-meG,
5%) [21]. TMZ is a prodrug that spontaneously converts at physiological pH to its active
metabolite. It has excellent oral bioavailability and blood-brain barrier penetration, critical
advantages for treating central nervous system (CNS) malignancies. While numerically
minor, O%-meG lesions drive TMZ’s therapeutic efficacy and mutagenic potential; in the
absence of repair, O°-meG mispairs with thymine during DNA replication, initiating futile
cycles of mismatch repair (MMR)-mediated excision and re-synthesis [21]. These lesions,
if unrepaired, lead to futile cycles of MMR and ultimately cell death—the mechanism
underlying TMZ'’s therapeutic benefit [19,21,22].

The MGMT enzyme directly reverses O°®-meG lesions in a stoichiometric reaction
(transferring the methyl group to a cysteine residue, thereby inactivating itself). Thus,
MGMT promoter methylation silences this repair pathway and strongly predicts TMZ
response [7-11]. However, the MGMT-MMR axis creates a potential double-edged sword:
patients whose tumors respond to TMZ (MGMT-methylated, MMR-proficient) face the
highest risk of therapy-induced hypermutation if MMR function is subsequently lost [20]
(Figure 1A-D).
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Figure 1. Mechanistic model of TMZ-induced mutagenesis and the SBS11 signature. (A) Temo-
zolomide (TMZ) enters the cell and alkylates DNA, producing N7—methylguanine (70%), N°-
methyladenine (9%), and the highly mutagenic O®-methylguanine (O°-meG, 5%). (B) In MGMT-
proficient cells, the MGMT enzyme directly removes the methyl group from the O° position, restoring

the guanine. In MGMT-deficient cells, the 0%-meG lesion persists. (C) In the presence of functional
mismatch repair (MMR), the complex recognizes the O%-meG:T mispair formed during replication.
This initiates futile repair cycles that lead to DNA double-strand breaks, cell cycle arrest, and apop-
tosis (the intended therapeutic effect). (D) In the absence of functional MMR (e.g., via MSH6 loss),
the O°-meG:T mispair escapes recognition. A second round of replication fixes the mispair into a
G:C>A:T transition mutation. (E) This process generates the characteristic SBS11 mutational signature,
defined by C>T transitions. (F) DNA polymerase 6 plays a key role in generating SBS11 mutations,
while DNA polymerase 1 acts to suppress this signature during trans-lesion synthesis. Google’s
Nano Banana Pro assisted in creating the illustration.

2.2. The SBS11 Mutational Signature

Initial studies using WGS of paired primary and corresponding recurrent gliomas
exposed a recurrent mutational pattern: the molecular footprint of TMZ exposure was
captured in mutational signature SBS11, characterized by C>T transitions enriched at GpC
dinucleotides—the molecular fingerprint of unrepaired O°-meG lesions [16,17]. This results
in a hypermutation phenotype, defined by over 10 mutations per megabase (Mut/Mb) and
often exceeding 100 Mut/Mb (Figure 1D,E). Hypermutation affects 30-57% of TMZ-treated
IDH-mutant low-grade gliomas at recurrence and is associated with accelerated progres-
sion, distant recurrence patterns, and shortened survival [20,23,24]. Comparable data in
IDH-wildtype glioblastoma remain limited, as most patients succumb to disease before
hypermutation-driven recurrence can be fully characterized, though the phenomenon has
been documented in recurrent IDH-wildtype glioblastoma [24].

While the evidence that TMZ exposure can result in the development of hypermutator
phenotypes is fairly robust [13,20], the direct attribution to the SBS11 signature has faced
scrutiny [15,25]. A notable 2019 study by Kucab et al. found that TMZ exposure in human-
induced pluripotent stem cells resulted in predominantly T>C substitutions. Conversely,
the signature of treatment with 1,2-Dimethylhydrazine, a potent alkylating agent with
known carcinogenicity, was found to be very similar to SBS11. Nonetheless, recent 2025
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studies reconciled this finding and showed in nearly 40 lymphoblast cell lines that an
SBS11-like pattern was induced by TMZ upon sequential inactivation of DNA repair
pathways. MMR deficiency resulted in TMZ resistance, allowing for the accumulation of
ultra-hypermutator phenotypes with correspondence to SBS11 [26]. Mechanistically, Sanyal
et al. have biochemically demonstrated the mechanistic basis of SBS11 formation [17].
In vitro studies using purified DNA polymerases and TMZ-damaged templates revealed
that DNA polymerase & (Pol §), the major replicative polymerase, efficiently generates
SBS11-like mutation spectra when encountering O®-meG lesions. The mutation pattern
arises from template-strand mispairing: O%-meG preferentially pairs with thymine rather
than cytosine, resulting in G:C>A:T transitions upon replication. The characteristic CpG
enrichment reflects the methylation specificity of TMZ at guanine residues within CG
dinucleotides. Lastly, Chowdhury et al. resolved the initial conflict in a longitudinal
analysis of the Glioma Longitudinal Analysis (GLASS) consortium cohort and found two
distinct TMZ-associated mutational signatures: the classic SBS11, and a T>C dominated
signature, SBS119, thereby reconciling the preclinical finding by Kucab et al. from 2019 [27].
Interestingly, Sanyal et al. also found that human DNA polymerase n (Pol 1) sup-
presses SBS11-like mutations, suggesting that trans-lesion synthesis polymerases (a damage-
tolerance mechanism that allows replication machinery to bypass bulky DNA lesions) may
modulate the mutagenic consequences of TMZ therapy [17] (Figure 1F). These findings,
subject to replication and validation studies, have potential translational implications:
enhancing Pol i activity might reduce hypermutation risk, while Pol 1 inhibition could
paradoxically enhance TMZ cytotoxicity at the cost of increased mutagenic burden.

2.3. MMR Deficiency: Amplifier of the Hypermutator Phenotype

The transition from moderate mutation accumulation to frank hypermutation occurs
through acquired MMR deficiency, most frequently via MMR gene mutations (up to 91% of
TMZ-treated hypermutator phenotypes), mainly biallelic inactivation or mutations in the
MSHS6 gene (more than 40%), including a recurrent p.T12191 alteration [20,27-29]. Multi-
region sequencing and phylogenetic reconstruction studies reveal that MMR-deficient
subclones emerge under TMZ selection pressure, expanding clonally to dominate recurrent
tumors [14,20]. The hypermutator phenotype is defined not merely by mutation (which
can reach up to ultra-hypermutator > 200 Mut/Mb) but by the overwhelming enrichment
of SBS11 and related signatures (SBS119) indicative of TMZ mutagenesis; recent analyses
from the GLASS consortium, encompassing 206 IDH-mutant gliomas with paired primary
and recurrent samples, demonstrated enrichment for SBS11 and SBS119 signatures after
TMZ treatment in both astrocytoma and oligodendroglioma subtypes [14,27]. In addi-
tion, hypermutation was identified in 30-57% of recurrent low-grade gliomas previously
exposed to TMZ, indicating that this is not a rare phenomenon but rather a common
evolutionary trajectory [20,23].

Post-transcriptional regulation adds complexity to MMR function in gliomas. The
RNA-binding protein MEX3A, upregulated following TMZ exposure, binds MSH2 mRNA
and promotes its degradation, effectively inducing functional MMR deficiency [30]. This
epigenetic mechanism provides an additional pathway to hypermutation beyond genetic
MSHBS6 inactivation.

Overall, TMZ-induced mutagenesis, characterized by SBS11, can be vastly elevated
with concurrent MMR deficiency. Its evolutionary consequences are an active field
of research.

https://doi.org/10.3390/cells15010057


https://doi.org/10.3390/cells15010057

Cells 2026, 15, 57

50f17

Founding
Alterations

Normal Cell
IDH1 R132H
TP53 mutation

and/or
1p/19q codeletion

3. Tumor Evolution Under TMZ Pressure
3.1. Evolutionary Trajectories: Clonal Dynamics and Malignant Transformation

TMZ treatment fundamentally reshapes glioma evolutionary landscapes, driving di-
vergent trajectories [14,31]. In recurrent astrocytoma, hypermutation is associated with
malignant transformation into grade 4 disease and the acquisition of additional oncogenic
drivers. Hypermutation was statistically significantly associated with high-grade disease at
recurrence with an odds ratio of 12 in a patient cohort of n = 82 and with significantly worse
prognoses compared to recurrent tumors without hypermutation, with a hazard ratio of
3.4 [23]. Phylogenetic reconstruction using WGS illuminates the temporal emergence of
hypermutator clones [31]. Early truncal alterations (IDH1/2 mutations, TP53 mutations in
astrocytomas, 1p/19q co-deletion in oligodendrogliomas) remain stable across treatment,
whereas late-stage alterations show dramatic evolutionary divergence. TMZ exposure
selects for MMR-deficient clones that subsequently undergo explosive mutagenesis, often
accompanied by driver mutations in growth factor signaling pathways (PDGFRA, MET,
EGFR) and cell cycle regulators (CDKN2A /B, RB1) [31,32] (Figure 2). CDKN2A homozy-
gous deletion was the most frequently acquired alteration after chemoradiation, present
in grade 4 tumors but often absent in the primary lower-grade disease [32]. Concomitant
acquired activating PDGFRA or MET alterations frequently co-occur with CDKN2A loss,
suggesting coordinated selection for proliferative advantage and the evasion of senescence
during malignant progression. Importantly, these recurrence-associated alterations repre-
sent clonal selection under therapeutic pressure rather than direct TMZ-induced mutagene-
sis. At initial diagnosis, CDKN2A /B homozygous deletion is present only in approximately
10% of IDH-mutant gliomas, but increases to 30% at recurrence following treatment [31,33].
Similarly, PDGFRA amplification and RB1 inactivation are rare at diagnosis but emerge
frequently at recurrence. Rautajoki et al. demonstrated that CDKN2A /RB1 inactivation
was most common in tumors that received chemoradiation compared to radiation alone,
supporting treatment-mediated selection [32].
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Figure 2. Phylogenetic evolution of gliomas under TMZ selection pressure. The diagram traces the
evolutionary history of a glioma from a normal cell through treatment to recurrence. Pre-treatment:
the founding clone (typically a low-grade tumor) carries initial alterations (e.g., IDH1 mutation,
1p/19q co-deletion) and a moderate mutational burden (~1 Mut/Mb). Treatment: Exposure to TMZ
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and radiation creates a bottleneck and selective pressure. Hypermutator recurrence (red branch): ac-
quisition of MSH6 loss leads to a hypermutator phenotype. This lineage undergoes rapid
clonal expansion characterized by the SBS11 signature and an extremely high mutational burden
(>100 Mut/Mb). These clones frequently acquire additional drivers (e.g.,, CDKN2A deletion,
RB1 mutation) and are often found at distant recurrence sites. Non-hypermutator recurrence
(blue branch): alternatively, a residual clone retaining MMR proficiency may drive recurrence. These
tumors maintain a lower mutational burden (<10 Mut/Mb) and follow a distinct evolutionary trajec-
tory (e.g., MET amplification), typically recurring at the original tumor site. Google’s Nano Banana
Pro assisted in creating the illustration.

3.2. Spatial and Temporal Heterogeneity

Multi-region sequencing studies demonstrate that TMZ-induced hypermutation drives
extraordinary spatial heterogeneity within recurrent gliomas [20,34]. While founding driver
mutations remain ubiquitous across sampling sites, the hypermutator phenotype generates
thousands of private passenger mutations that differ between geographic regions of the
same tumor. This spatial divergence reflects both the stochastic nature of TMZ-induced
mutagenesis and differential selection pressures across the tumor microenvironment. Im-
portantly, the “distant recurrence” phenotype, i.e., whereby tumors recur in brain regions
remote from the original site, shows a strong association with hypermutation and arises
from highly mutated subclones [23,35].

The temporal dynamics of hypermutation also reveal important information. Liquid
biopsy studies using cerebrospinal fluid (CSF) cell-free DNA demonstrate that the SBS11
signature can be detected early during recurrence or prior to recurrence detection via
radiological assessment [36]. This time interval between molecular and imaging detection
creates a potential for adaptive intervention, a concept explored further in Section 6.

3.3. Cellular State Plasticity and Glioma Stem Cell Dynamics Under TMZ Pressure

Glioblastoma cellular heterogeneity extends beyond genetic diversity to encompass
transcriptional plasticity among distinct cellular states. Single-cell RNA sequencing has
revealed four major cellular states: oligodendrocyte precursor cell-like (OPC-like), neural
progenitor cell-like (NPC-like), astrocyte-like (AC-like), and mesenchymal-like (MES-like),
with tumors dynamically transitioning between these states [37]. Recent single-cell analyses
examining glioma cellular composition before and after TMZ treatment have revealed that
NPC-like clusters exhibit particularly strong stemness features and an enhanced DNA
repair capacity, potentially contributing to treatment resistance [38]. Notably, the acquisition
of the MES-like phenotype is associated with treatment failure and disease recurrence,
including TMZ treatment [39]. Glioma stem cells (GSCs), marked by the transcription
factors SOX2 and OLIG2, among others, promote stemness and TMZ resistance through
multiple mechanisms [40]. One mechanism is GSC-mediated senescence escape. While
the majority of glioma cells are eradicated by TMZ, a subset enters cell cycle arrest and
adopts a senescence-associated secretory phenotype [41]. These cells eventually escape
senescence, re-enter the cell cycle, and form aggregates exhibiting enhanced stem-like
characteristics including elevated stemness marker expression, increased invasiveness, and
chemotherapy resistance.

4. Clinical Evidence on TMZ-Induced Mutagenesis
4.1. The Immunogenic Enigma: TMB, Neoantigens, and Immunotherapy in Glioblastoma

As presented above, TMZ-induced hypermutation generates the highest TMB ob-
served across adult gliomas, frequently exceeding 100 Mut/Mb—comparable to or higher
than melanoma and non-small-cell lung cancer, malignancies exquisitely sensitive to im-
mune checkpoint inhibitors (ICIs) [42]. TMB is a known predictor of benefit from IClIs, yet
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ICIs have failed in glioblastoma. Three landmark phase III trials (CheckMate143, Check-
Mate498, CheckMate548) demonstrated no survival benefit from ICIs in glioma [43-45]. In
CheckMate143, nivolumab (PD-1 blockade) was compared with bevacizumab in patients
with recurrent glioblastoma. Notably, it was the only study to recruit patients with prior
exposure to TMZ, and no formal TMB-high subgroup analysis was published. The Check-
Mate498 trial compared ICI vs. TMZ in CheckMate548, while comparing ICI + TMZ + RT
vs. TMZ + RT alone, and the treatment was given concurrently and not in a sequential
manner. To date, no formal analysis has compared ICI + vs. placebo in TMZ-induced
TMB-H gliomas. The phase II NCT02658279 study, evaluating pembrolizumab in patients
with recurrent malignant glioma with a hypermutator phenotype, has not yet published
results. However, retrospectively, Touat and colleagues showed that 11 patients with
TMB-H MMR-deficient glioma who were treated with ICIs showed no benefit compared to
199 TMB-L patients [20].

As TMB serves as a surrogate for neoantigen load in many cancers, this enigma
demands mechanistic explanation. Interestingly, a study showed that TMZ-hypermutant
gliomas are highly immunogenic and are rejected outside the brain (subcutaneous models),
but are not rejected when placed inside the brain (orthotopic in vivo models) [46]. This
highlights the brain microenvironment itself as a dominant suppressive force, “stunting”
the immune response that the neoantigens should have triggered. Two bold landmark
phase II studies explored TMZ-induced hypermutation in immunogenic “cold” tumors
outside the CNS. The researchers aimed to explore whether TMZ can sensitize MGMT-
silenced, microsatellite stable (MSS) metastatic colorectal cancer (mCRC) to ICIs [47,48]. In
the MAYA trial, TMZ priming was followed by low-dose ipilimumab (CTLA4 blockade)
plus nivolumab, while in the ARETHUSA trial (NCT03519412), TMZ priming was followed
by pembrolizumab only if the priming resulted in TMB > 20 Mut/Mb. Both studies
demonstrated the TMZ signature SBS11 in blood ctDNA. Responses were 45% objective
response rate (ORR) in MAYA, 0% ORR in ARETHUSA (0/6), but 50% showed stable
disease (3/6). Despite these phase II findings, both published in 2021-2022, no phase III
trials have been initiated to further evaluate this sequential TMZ-then-ICI approach as of
November 2025.

Multiple immunosuppressive mechanisms can explain the decoupling of TMB from
immune responsiveness [49] (Figure 3A). First, the immunologically “cold” tumor microen-
vironment (TME). Glioblastoma maintains a profoundly immunosuppressive TME, exhibits
profound T-cell exclusion, minimal PD-L1 expression, and the enrichment of immunosup-
pressive myeloid cells (Myeloid-derived suppressor cells, M2 macrophages) and regulatory
T cells [50-52]. TMZ itself may exacerbate this through lymphodepleting effects, reducing
the pool of tumor-reactive effector cells [51]. Furthermore, glioblastomas rarely develop
tertiary lymphoid structures, organized immune hubs present in checkpoint-responsive
tumors that sustain antitumor immunity [53,54]. Second, molecular heterogeneity and plas-
ticity: single-cell analyses reveal that glioblastoma comprises multiple transcriptional states,
including stem-like, mesenchymal, and differentiated phenotypes [37]. This intratumoral
heterogeneity enables rapid adaptation through transcriptional plasticity, potentially al-
lowing tumor cells to evade immune recognition without genetic evolution. TMZ-induced
hypermutation might amplify this heterogeneity. Moreover, while TMZ induces mutations
and neo-peptides, its subclonal, heterogeneous nature might result in a less immunogenic
environment [20,55,56]. Loss of HLA class I expression or mutations in antigen presenta-
tion machinery (such as TAP1/2 and (3;-microglobulin) represent a widespread immune
escape mechanism in various cancers, including glioblastoma [57,58]. The loss of HLA
prevents neoantigen presentation to CD8" T cells, irrespective of the mutational burden,
thereby decoupling TMB from immune recognition. Lastly, most glioblastoma patients
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are treated with dexamethasone to manage peritumoral edema. A subgroup analysis
of the CheckMatel43 trial revealed that baseline use of dexamethasone was associated
with significantly worse survival among nivolumab-treated patients compared to those
receiving bevacizumab [43]. Preclinical studies in glioblastoma models demonstrate that
dexamethasone abolishes ICI efficacy in a dose-dependent manner by suppressing T-cell
proliferation, trafficking, and effector functions [59].
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Figure 3. The “immunogenic enigma” and therapeutic vulnerabilities in hypermutated gliomas.
(A) The immunogenic enigma: despite exhibiting a high tumor mutational burden (TMB) and poten-
tial neoantigen load, hypermutated gliomas often fail to respond to immune checkpoint inhibitors
(ICIs). This resistance is driven by multiple barriers: the blood-brain barrier (BBB) limits T-cell
trafficking; systemic dexamethasone use suppresses immune function; the tumor microenvironment
is immunosuppressive (“cold”), dominated by regulatory T-cells (Tregs) and M2 macrophages; and
tumor cells may lose HLA Class I expression, impairing neoantigen presentation. (B) Therapeutic
vulnerabilities: Hypermutation creates specific synthetic lethal opportunities. DDR Blockade: the
inhibition of DNA damage response proteins (PARP, ATR, or WEE1) in the context of high-replication
stress leads to replication catastrophe and double-strand breaks. Metabolic and structural targets:
agents that stabilize G-quadruplex structures or inhibit mitotic regulators like AURKA can drive the
cancer cells into mitotic catastrophe and cell death. Google’s Nano Banana Pro assisted in creating
the illustration.

4.2. Acquired Resistance Mechanisms

Beyond MMR deficiency as an escape mechanism [60], several other mechanisms con-
tribute to acquired resistance to TMZ. Long non-coding RNA (IncRNA) networks can un-
dergo remodeling in TMZ-resistant gliomas [22,61-63]. Expression profiling of IDH-mutant
low-grade gliomas treated with TMZ identified a three-IncRNA signature (including HOXD-
AS2 and H19-related IncRNAs) that is correlated with TMZ resistance and progression-free
survival [22,62,64]. Functional annotation suggested that these IncRNAs are involved in cell
proliferation and differentiation through interaction with cancer-related genes like SMAD2
and UBRS5 [62]. The mechanistic basis involves chromatin remodeling and transcriptional
reprogramming, which enable cells to evade TMZ-induced damage. Genomic analyses
reveal frequent acquisition of activating alterations in PI3K/AKT/mTOR and receptor
tyrosine kinase (RTK) pathways in recurrent disease [32,65]. PDGFRA amplification, MET
mutations, and EGFR alterations emerge under therapeutic pressure, often in conjunction
with CDKN2A loss [20,31,32,66]. These alterations restore proliferative capacity and may
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confer survival advantages independent of TMZ sensitivity. Targeting these pathways rep-
resents a rational combination strategy; however, clinical trials of PI3K or mTOR inhibitors
as single agents have not demonstrated a clinical benefit [67,68]. Post-translational pro-
tein modifications can also affect resistance to TMZ. Histone lactylation (H3K9la) reduces
MLH1 expression in recurrent glioblastoma, weakening MMR and contributing to TMZ
resistance [69]. TRIM25 expression is frequently upregulated in glioblastoma, correlating
with higher tumor grades and resistance to TMZ. Elevated TRIM25 levels are associated
with poor prognosis and enhanced tumor growth both in vitro and in vivo. Mechanisti-
cally, TRIM25 inhibits oxidative stress and ferroptotic cell death during TMZ treatment
by promoting the nuclear import of Nrf2 through Keap1 ubiquitination, highlighting its
role in glioblastoma chemoresistance and its promise as a therapeutic target [70]. Exosome-
transmitted circCABIN1 represents emerging evidence that the exosome-mediated transfer
of circular RNAs, such as circCABIN], plays a crucial role in promoting TMZ resistance in
gliomas by sustaining downstream signaling and enhancing cancer stemness features. The
dissemination of drug resistance via exosomal circRNAs highlights a novel intercellular
communication mechanism and suggests promising therapeutic strategies for overcoming
acquired chemoresistance. Advances in engineered exosome delivery systems may further
enable targeted interventions aimed at restoring TMZ sensitivity and improving patient
outcomes [71]. Lastly, global transcriptomic analyses have identified HMOX1, LTF, and
STEAP3 as iron metabolism-related genes (IMRGs), which are strongly associated with
mesenchymal transformation, TMZ resistance, and poor prognosis [72]. The knockdown
of these genes reduces glioma cell proliferation, migration, and invasion [72]. The iron
metabolism—TMZ resistance axis remains mechanistically incompletely understood.

5. Therapeutic Opportunities and Strategies
5.1. Targeting the DNA Damage Response

The DNA damage response (DDR) dependency created by TMZ-induced genomic
instability presents exploitable vulnerabilities. Hypermutated, MMR-deficient gliomas
accumulate replication stress, rely on alternative repair pathways, and display synthetic
lethality with DDR inhibitors. Poly(ADP-ribose) polymerase (PARP) inhibitors target de-
fects in homologous recombination repair and base excision repair. While earlier-generation
PARP inhibitors (e.g., olaparib, talazoparib) showed lower brain penetration, among others,
due to the blood-brain barrier and efflux transporter activity, newer agents such as niraparib
achieved higher CNS concentrations [73-75]. In a preclinical study using patient-derived
xenograft cell lines, niraparib combined with TMZ increased the expression of NKG2D
ligands (ULBP1) on glioblastoma cells in vitro, enhancing v6 T-cell-mediated cytotoxicity
in co-culture assays. Veliparib, another brain-penetrant PARP inhibitor, demonstrated
TMZ sensitization in patient-derived xenograft (PDX) models, though clinical translation
has been limited by overlapping hematologic toxicities with TMZ [75,76]. As for ATR
inhibitors, ataxia telangiectasia and Rad3-related kinase (ATR) regulate replication, stress
responses, and cell cycle checkpoints. Preclinical studies demonstrate that ATR inhibi-
tion induces synthetic lethality in MMR-deficient gliomas [77-80]. In 2024-2025, three
selective ATR inhibitors advanced in development (Camonsertib, phase II; AD1058, preclin-
ical; YY2201, preclinical), of which the preclinical AD1058 was shown to be a good brain-
penetrator [81-83]. Regarding the WEE1 and CHK1 inhibitors, WEE1 kinase and check-
point kinase 1 (CHK1) regulate G2/M cell cycle transition and DNA damage checkpoints,
downstream to ATR, and have also emerged as promising therapeutic targets, as shown in
several recent studies [84-86].
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5.2. Reimagining Immunotherapy for Hypermutated Gliomas

The failure of ICI monotherapy does not preclude immunotherapy success; rather, it
demands more sophisticated approaches. First, while there are multiple studies showing
non-impressive responses to PD1 inhibitors in glioblastoma, small-sized retrospective
evidence for TMZ-induced hypermutation tumors, and preclinical mechanisms for these
findings, it is important to point out that there are no prospective studies or subgroup
analyses published explicitly for TMZ-induced hypermutated phenotypes in gliomas.
Moreover, given the subclonal nature and reduced antigen presentation, a mutational load
response might be beneficial. Perhaps ultra-hypermutators would benefit from ICIs, while
the currently used cutoffs of 10-30 Mut/Mb are not enough in the case of gliomas. A 2025
proof-of-concept case report described the neoadjuvant administration of a triplet immune
checkpoint blockade (nivolumab, ipilimumab, and relatlimab targeting PD-1, CTLA-4,
and LAG-3, respectively) in a single patient with newly diagnosed IDH-wildtype, MGMT-
unmethylated glioblastoma [87]. Following a single dose administered 12 days before
resection, marked tumor-infiltrating lymphocyte infiltration and activation were observed
compared to the baseline biopsy, with no evidence of recurrence at 17 months. A phase III
clinical trial (GIANT; NCT06816927) is planned to prospectively evaluate this strategy in a
larger cohort. Therefore, the PD1-CTLA4-LAGS3 triplet in TMZ-induced TMB-H would also
be of interest. Lastly, while multiple advanced immunotherapies are being investigated in
gliomas, these are beyond the scope of our TMZ-centered review.

5.3. Exploiting Acquired Vulnerabilities

Lomustine (CCNU) may show activity against MMR-deficient gliomas that are TMZ-
resistant [88,89]. The drug, from the nitrosourea (NU) class, generates distinct DNA lesions,
including interstrand crosslinks not requiring MMR for cytotoxicity. Another NU drug,
BCNU, has demonstrated in vitro activity against glioblastoma cell lines, and a carmustine
wafer (Gliadel) is FDA-approved for the intratumoral treatment of glioblastoma. Recently,
this class has gained clinical attention, as reviewed in [90]. A landmark preclinical study
demonstrated that the dual inhibition of the EGFR/AKT and mevalonate pathways syner-
gistically enhances the antitumor activity of TMZ in glioblastomas by inducing metabolic
reprogramming and exposing vulnerabilities in energy metabolism. Mechanistically, this
combination remodels tumor-cell lipid metabolism and downregulates fatty acid synthesis
genes in an NF-kB-dependent manner, highlighting a promising therapeutic strategy for
EGFR-overexpressed or mutated glioblastoma [91]. Alternative splicing has also been gain-
ing attention [92,93]. TMZ resistance has been shown to create vulnerabilities in the form
of guanine mutations that disrupt G-quadruplex DNA structures and G-rich RNA splice
sites. Tiek et al. demonstrated that TMZ-resistant gliomas become selectively sensitive
to G4-stabilizing agents and splicing kinase inhibitors [93]. TMZ-induced hypermutation
frequently co-occurs with chromosomal instability and dysregulated mitotic control. A
20-gene CDC20-associated mitotic signature (CDC20-M), comprising genes controlling
chromosome segregation and mitotic checkpoints identifies gliomas with high genomic
instability and TMZ resistance [94]. The CDC20-M signature was validated as an indepen-
dent predictor of poor survival across more than 1000 glioma patients in four independent
datasets, with high-risk tumors exhibiting significantly shorter progression-free and overall
survival [94]. Aurora kinase A (AURKA), a master regulator of mitotic spindle assembly
and chromosome segregation, emerged as a tractable therapeutic target within this signa-
ture. Subsequently, the AURKA inhibitor MLN8237 (alisertib) demonstrated efficacy in
preclinical glioma models [95]. Early-phase clinical work has combined alisertib with radia-
tion in high-grade gliomas with acceptable toxicity, and preclinical data support synergy
with TMZ and radiation [95,96] (Figure 3).
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6. Real-Time Monitoring with Liquid Biopsy from CSF and Plasma

Liquid biopsies using cell-free DNA (cfDNA) or circulating-tumor DNA (ctDNA) from
plasma or from CSF represents a transformative advance for the real-time monitoring of
glioma evolution [36,97,98]. The latest advancements have allowed for the detection of
mutational signatures with low numbers of mutations, such as those derived from targeted
gene panels [99,100]. Moreover, unlike plasma, where circulating-tumor DNA (ctDNA)
is sparse due to blood-brain barrier restrictions, CSF yields robust ctDNA signals [36].
Therefore, CSF might serve as a superior reservoir compared to plasma for ctDNA profiling
in gliomas, offering a reliable modality for longitudinal monitoring and the detection of
genomic evolution, as supported by several 2025 publications [98,101]. Prospective genomic
analysis demonstrates a ctDNA detection rate of approximately 50-60% in CSE, with high
concordance (84%) with the primary tumor and longitudinal CSF sampling-captured
temporal evolution, including specific utility in monitoring treatment resistance, capable
of detecting the specific hypermutation signatures associated with acquired resistance to
TMZ therapy [98].

7. Future Directions and Conclusions

Altogether, the TMZ era in neuro-oncology has revealed a fundamental effect: ef-
fective treatment that inevitably drives tumor evolution. This duality of TMZ as both a
life-prolonging therapy and a potent evolutionary driver necessitates careful consideration
of the risk-benefit balance, with two unanswered questions: who are the patients that
may develop the hypermutator phenotype? How can TMZ be exploited as an induction
therapy to sensitize tumors to successful treatments? We propose three interconnected
research avenues with promising transformative implications: (i) integrating spatial tran-
scriptomics, proteomics, and epigenomics to map how TMZ-induced mutations rewire
cellular states and tumor-immune interactions at single-cell resolution. Understanding why
certain hypermutated regions remain immune-excluded while others permit infiltration
may unlock combination immunotherapy strategies. (ii) Al-driven neoantigen prediction
with machine learning algorithms that integrate, among others, mutational context, HLA
typing, proteasomal processing predictions, and TCR repertoire profiling, could identify
the rare immunogenic neoantigens within thousands of TMZ-induced passengers. Target-
ing these computationally prioritized neoantigens through vaccines or TCR-engineered T
cells may overcome the quantity—quality enigma. (iii) Advanced organoid models such
as patient-derived organoids that recapitulate tumor heterogeneity, MMR status, and mi-
croenvironmental features, enabling the functional testing of evolutionary dynamics and
therapeutic combinations ex vivo. Organoid drug screening could identify patient-specific
vulnerabilities before clinical trial enrollment, personalizing therapy selection.

In conclusion, the synthesis presented here repositions TMZ from a first-line cytotoxic
agent to a central driver of glioma evolution, whose variable mutagenic legacies shape
subsequent therapeutic decisions. Recognizing hypermutation as both a challenge and an
opportunity opens new avenues toward precise and evolution-aware brain tumor manage-
ment. Future, carefully designed clinical trials should elucidate the clinical relevance of the
translational findings and ultimately pave the way to improved patient outcomes.
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