

Assisted reproduction technology and risk of malignancy among offspring: a meta-analysis

Linyu Zhang ^{a,b}, Gang Tang^c, Xinrui Sun ^{a,b}, Xue Xiao^{b,d,*}, Fang Ma^{a,b,*}

^a Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China

^b Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China

^c Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

^d Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan,610041, P.R. China

* Corresponding author:

Fang Ma; Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu,

Copyright©2025 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of IJS Publishing Group Ltd. This is an open access article distributed under the Creative Commons Attribution-ShareAlike License 4.0, which allows others to remix, tweak, and build upon the work, even for commercial purposes, as long as the author is credited and the new creations are licensed under the identical terms.

¹

Sichuan, 610041, P.R. China; E-mail: mafangmed@126.com

Xue Xiao; Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China; E-mail: xiaoxue@schxfy.com

Acknowledgements statement: none. Assistance with the study: none.

Financial support and sponsorship: This work was financially supported by Sichuan Province Cadre Health Care Scientific Research Project (2023-1701) and Science and Technology Department of Sichuan Province (2024YFFK0325).

Conflicts of interest: none.

Presentation: none, none off.

Assisted reproductive technology and risk of malignancy among offspring: a meta-analysis

ABSTRACT

Background: With the popularization of assisted reproductive technology (ART), the question of whether ART increases the risk of malignancy in offspring has received increasing attention. Although many studies have explored the relationship between ART use and malignancy in offspring, the results remain controversial.

Materials and methods: Two authors used the Embase, Web of Science, PubMed, and the Cochrane Library databases to conduct a systematic search of published studies on the effects of ART on the risk of malignancy in offspring. Odds ratios (OR) and 95% confidence intervals were used for the analysis.

Results: Twenty cohort and four case-control studies were included in this review. ART did not increase the risk of overall malignancy in the offspring (OR, 1.04) compared with natural pregnancy (NP). However, the subgroup analysis showed that the offspring in the ART group had a higher risk of leukaemia (OR, 1.24), soft tissue tumours (OR, 1.35), hepatic tumours (OR, 2.10), and epithelial tumours and melanoma (OR, 1.50). The risks of lymphoma, retinoblastoma, central nervous system tumours, neuroblastoma, renal tumours, germ cell and gonad tumours, and embryonic tumours did not differ between the ART and NP groups. Subgroup analysis based on ART type showed that in vitro fertilisation, intracytoplasmic sperm injection, frozen embryo transfer, and intrauterine insemination or ovulation did not increase the risk of overall malignancy compared to the NP group.

Conclusions: ART may not be associated with the risk of overall malignancy in offspring. However, we found that ART may be associated with an increased risk of leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours, and melanoma.

Keywords: Assisted reproductive technology; In vitro fertilization; Intracytoplasmic sperm injection; Frozen embryo transfer; Paediatric malignancy

Highlights:

• ART may not be associated with an increased risk of overall malignancy.

• ART may be associated with an increased risk of leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours, and melanoma.

• Subgroup analyses based on different ART types found that IVF, ICSI, FET, and OI/IUI may not be associated with an increased risk of overall malignancy.

INTRODUCTION

On 25 July 1978 the first in vitro fertilization (IVF) baby was born. Forty-six years later, over 10 million babies have been born worldwide with the use of assisted reproductive technology (ART)¹. However, after decades of follow-up observations, health issues among ART offspring have gradually surfaced, including malformations ², malignant tumours ³, premature births ⁴, and more. However, the relationship

between ART and the risk of malignancy in offspring remains contentious.

Results from the Swedish National Health Register, studied by Kallen et al., indicated that ART did not affect the incidence of malignant tumours in offspring with a sample size of 16,280⁵. Conversely, a cohort study by Rios et al. showed that both frozen and fresh embryo transfers with ART increased the risk of acute lymphoblastic leukaemia; this study included 8,526,306 children with a median follow-up time of 6.7 years ⁶. Although five meta-analyses were conducted, the results were contradictory. A meta-analysis by Raimondi et al. found no evidence that ART increased the risk of tumours in children ⁷. However, a meta-analysis by Hargreave et al. revealed that children born after fertility treatment (including ART and medication) had an increased risk of overall malignancy, haematological tumours, central nervous system (CNS) tumours, and other solid tumours. The subgroup analysis also showed an increased risk of leukaemia, neuroblastoma, and retinoblastoma⁸. A meta-analysis by Wang et al. suggested a possible association between post-fertility treatment (including ART and drug therapy) and an increased risk of overall tumours, haematological malignancies, other solid tumours, leukaemia, and hepatic tumours in offspring⁹. In contrast, a meta-analysis by Gilboa et al. based on extensive data found that ART, particularly IVF, was not associated with an overall increased risk of childhood tumours ¹⁰. In 2020, Zhang et al.'s meta-analysis, which included studies published up until January 2020, found that most types of fertility treatments, including IVF, intracytoplasmic sperm injection (ICSI), and fertility drugs, were not associated with an increased risk of childhood cancer. However, the meta-analysis suggested that frozen embryo transfer might be linked to a higher incidence of childhood cancer¹¹. Since 2020, several high-quality cohort studies have been conducted on this topic. Several studies have shown that ART is associated with an increased risk of tumours in offspring ^{6,12-15}. The addition of a large body of new evidence may update the conclusions of the previous meta-analyses.

Therefore, to explore the relationship between ART and the risk of malignancy in the offspring, we combined all existing observational studies and conducted subgroup analyses based on the type of ART and malignancy to draw more reliable conclusions. It is reasonable to believe that the results of this meta-analysis may prompt clinicians to re-evaluate the relationship between ART and malignant tumours in the offspring.

METHODS

Search strategy

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Supplementary Methods 1¹⁶ and A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR2) (Supplementary Methods 2) ¹⁷.

Two authors independently carried out a systematic search of the Embase, Web of Science, PubMed, and Cochrane Library databases for studies published from the inception to May 4, 2024 (updated on 20 October 2024), by using the following search strings: ((assisted reproductive technology) OR (ART) OR (intrauterine insemination) OR (IUI) OR (in vitro fertilization) OR (IVF) OR (intracytoplasmic sperm injection) OR (ICSI) OR (preconception genetic diagnosis) OR (PGD) OR (occyte in vitro maturation) OR (IVM)) AND ((children) OR (offspring) OR (adolescent) OR (paediatric)) AND ((cancer) OR (tumours) OR (neoplasm)) (Table 1). No language restrictions were imposed. A list of references for relevant reviews and the included studies was also searched.

Study selection

The inclusion criteria were:

(P) Children;

(I) Children born through ART - in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), preconception genetic diagnosis (PGD), intrauterine insemination (IUI), ovulation (OI) and frozen embryo transfer (FET);

(C) Children who were conceived naturally were regarded as control cohorts, and case-control studies that included tumour and non-tumour groups.

(O) Outcomes of interest included overall malignancy, CNS tumours, neuroblastoma, leukaemia, lymphoma, retinoblastoma, hepatic tumours, renal tumours, soft tissue tumours, germ cell and gonad tumours, epithelial neoplasm and melanoma, and embryonic tumours.

(S) Cohort or case control studies.

Reviews, experimental or qualitative studies, conference abstracts, case reports, reviews, and duplicate publications were excluded.

Data extraction

Data including the first author, year, country, study design, sample size, ART details, and tumour type were extracted from each study by two authors. The research team contacts the corresponding author of the study directly when the necessary information is not available.

Quality assessment

For non-randomised controlled trials, the Newcastle-Ottawa Scale (NOS) is utilised to evaluate quality, with a total score of nine points, and a score of ≥ 6 being indicative of high quality. Two authors independently performed literature search, study selection, data extraction, and quality assessment. Discrepancies between both authors were resolved by a third author.

GRADE assessment

The GRADEpro online tool (https://gradepro.org/) was used to assess evidence quality. The GRADE consists of four grades: very low, low, medium, and high. Two researchers independently assessed the quality of evidence. Any disputes between them will be discussed and resolved.

Statistical analysis

The odds ratios (OR) and 95% confidence intervals (CI) were calculated as qualitative variables. Heterogeneity among studies was quantified using I^2 statistics. $I^2 \leq 50\%$ was considered as low heterogeneity, a fixed effect model was applied. Otherwise, if I^2 was > 50%, a random-effects model was used. To ensure the robustness of our findings, we conducted sensitivity analysis by sequentially removing each study to

assess its impact on the overall effect size. Subgroup analyses were conducted based on ART type, tumor type, region and publication time. The entire analysis was performed using RevMan 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration 2014; Copenhagen, Denmark). Publication bias was assessed using Egger's test and a funnel plot if more than ten studies were identified. Statistical significance was set at p < 0.05.

RESULTS

Literature search

A total of 3,897 related articles were retrieved, of which 855 duplicates were excluded. After reviewing the titles and abstracts, we excluded 3,008 articles that did not meet the inclusion criteria. We evaluated the full text of the remaining 34 articles and finally included 24 studies for the meta-analysis (Fig 1) $^{6,10,12-15,18-35}$. Ten studies were excluded for the following reasons: no control group (n = 7), inability to extract data (n = 2), or the use of fertility drugs (n = 1). The corresponding authors of these two studies were contacted; however, the data were not available.

Study characteristics

Table 2 summarises the basic characteristics of the 24 included studies ^{6,10,12-15,18-35}. These studies were published between 2001 and 2024, and encompassed 31,810,095 participants (1,283,508 in the ART group and 30,526,587 in the natural pregnancy (NP) group). Four were case-control studies and the remaining 20 were cohort studies. The geographical distributions of the studies included four from France, three from the United States, three from the Netherlands, four from Israel, four from Denmark, three from Sweden, one from Greece, one from Norway, and one from China.

Methodological quality

Twenty cohort studies and four case-control studies were of good quality, with scores of six or more ^{6,10,12-15,18-35}. The methodological quality of each study is summarised in Table 3.

Meta-analysis

Overall malignancy

Twenty-four studies were utilised to evaluate the impact of ART on the risk of malignancy in the offspring of the participants $^{6,10,12-15,18-35}$. There was no significant difference in the risk of malignancy between the ART group and the NP group (OR 1.04, 95% CI 0.86, 1.27; Heterogeneity: I² = 92%, P < 0.00001) (Fig 2). Table 4 summarises the results of the meta-analysis.

Subgroup analysis

In addition, subgroup analysis according to tumour type showed that receiving ART was associated with a higher OR of leukaemia in children (OR 1.24, 95% CI 1.03, 1.50), with a high degree of heterogeneity across studies ($I^2 = 59\%$, P = 0.003) (Fig 3A) ^{6,12,14,15,24,26,29-35}. The risk of soft tissue tumours was higher in patients receiving ART than in those with NP (OR 1.35, 95% CI 1.08, 1.68), and there was no heterogeneity in the study ($I^2 = 38\%$, P = 0.12) (Fig 3B) ^{6,12,14,15,29,31,33-35}. Seven studies reported the association between ART and the risk of hepatic tumours, and the combined results showed that ART significantly increased the OR of hepatic tumours compared with NP (OR 2.10, 95% CI 1.15, 3.85), with significant heterogeneity across studies ($I^2 = 71\%$, P = 0.002) (Fig 3C) ^{6,14,15,29,31,33,34}. Three studies provided data on epithelial tumours and melanoma for ART, with significant differences between ART and NP (OR 1.50, 95% CI 1.12, 1.99) and no significant heterogeneity between studies ($I^2 = 3\%$, P = 0.36) (Fig 3D) ^{6,14,34}.

Ten studies reported data on ART and lymphoma risk, and the combined results showed no significant difference in OR (OR 0.96, 95% CI 0.65, 1.43; Heterogeneity: $I^2 = 68\%$, P = 0.0009) (Fig 4A) $^{6,12,14,26,29,31-35}$. The pooled results of the ten studies showed no significant difference in the risk of retinoblastoma with ART compared to that with NP (OR 1.12, 95% CI 0.69, 1.81; Heterogeneity: $I^2 = 57\%$, P = 0.01) (Fig 4B 6,14,15,18,19,24,29,31,33,34 . There was no significant difference in the risk of CNS tumours between ART and NP (OR 1.14, 95% CI 0.86, 1.51; Heterogeneity: $I^2 = 74\%$, P < 0.0001) (Fig. 4C) $^{6,14,15,25,29,31-35}$. Seven studies compared the risk of neuroblastoma in

NP, and the combined effect size showed that ART was not associated with an increase in OR of neuroblastoma (OR 1.24, 95% CI 0.67, 2.28; Heterogeneity: $I^2 = 78\%$, P = 0.0001) (Fig 4D) ^{14,15,29,31,33-35}. There was no significant difference between ART and NP in renal tumours (OR 1.13, 95% CI 0.69, 1.84; Heterogeneity: $I^2 = 73\%$, P = 0.002) (Fig 5A) ^{6,14,15,29,33,34}. Six studies compared ART and NP data and found no significant difference in the OR of germ cells and gonad tumours between both groups (OR 1.11, 95% CI 0.46, 2.73; Heterogeneity: $I^2 = 82\%$, P < 0.0001) (Fig 5B) ^{6,14,15,29,33,34}. There was no significant increase in OR of embryonal tumours in ART group (OR 1.62, 95% CI 0.61, 4.28), and the heterogeneity was high ($I^2 = 98\%$, P < 0.00001) (Fig 5C) ^{6,33}.

Subgroup analysis results based on ART type showed that the pooled data of 7,613,937 patients in 13 studies showed no significant difference in the OR of overall malignancy risk compared to NP with IVF (OR 1.25, 95% CI 0.84, 1.84; Heterogeneity: $I^2 = 88\%$, P < 0.00001) (Fig 6A) ^{10,12,18-22,24,26,27,30,33,35}. Two studies reported the association of ICSI with overall malignancy risk, and the combined results showed no significant difference in OR compared to NP (OR 1.18, 95% CI 0.84, 1.67; Heterogeneity: $I^2 = 0\%$, P = 0.51) (Fig 6B) ^{20,27}. Two studies described data on the overall malignancy risk between FET and NP, and the difference was not statistically significant (OR 1.23, 95% CI 0.49, 3.12; Heterogeneity: $I^2 = 90\%$, P = 0.002) (Fig 6C) ^{6,20}. Compared with NP, OI/IUI did not significantly increase the OR of overall malignancy risk (OR 1.03, 95% CI 0.40, 2.66; Heterogeneity: $I^2 = 50\%$, P = 0.16) (Fig 6D) ^{13,19}. In addition to ART type, we conducted subgroup analyses stratified by geographical region and publication period to further explore potential sources of heterogeneity.

Region-specific results revealed marked differences. In the Asia, pooled data from five studies (n = 3,085,111) demonstrated no significant increase in malignancy risk among ART offspring compared to NP (OR 1.09, 95% CI 0.93, 1.24; Heterogeneity: $I^2 = 0\%$, P = 0.48) ^{10,12,15,23,35}. In North America, pooled data from three studies (n = 4,231,015) indicated a statistically significant association between ART and malignancy risk (OR 2.00, 95% CI 1.14, 3.53), accompanied by a high level

of heterogeneity (Heterogeneity: $I^2 = 95\%$, P < 0.00001) ^{13,18,33}. Meanwhile, pooled results from 16 European studies involving 22,652,262 individuals showed no statistically significant association (OR 0.88, 95% CI 0.76, 1.03; Heterogeneity: $I^2 =$ 75%, P < 0.00001) ^{6,14,19-22,24-32,34}. Temporal trends were also assessed by stratifying studies according to their year of publication. For studies published on or before 2010 (7 studies, n = 3,362,855), the pooled OR was 0.99 (95% CI 0.52, 1.90; Heterogeneity: $I^2 = 55\%$, P = 0.04) ^{18,21,22,24,25,27,28}. Those published between 2010 and 2020 (11 studies, n = 8,507,257) yielded an OR of 1.09 (95% CI 0.78, 1.51; Heterogeneity: $I^2 = 94\%$, P < 0.00001) ^{10,19,20,23,26,29,30,32-35}, while studies published after 2020 (6 studies, n = 19,939,983) reported an OR of 0.99 (95% CI 0.79, 1.26; Heterogeneity: $I^2 = 90\%$, P < 0.00001) ^{6,12-15,31}.

Sensitivity analysis and publication bias

Sensitivity analysis showed that no single study affected the overall effect size of malignancy, retinoblastoma, lymphoma, CNS tumours, neuroblastoma, renal tumours, germ cell and gonad tumours, or IVF. The size of the pooled effect of leukaemia was influenced by the findings of a study by Petridou et al. (OR 1.19, 95% CI 0.98, 1.45; Heterogeneity: $I^2 = 58\%$, P = 0.006)²⁶. The overall effect size for soft tissue tumours changed in the study by Spector et al. (OR 1.18, 95% CI 0.92, 1.52; Heterogeneity: $I^2 = 0\%$, P = 0.76)³³. The size of the pooled effect of hepatic tumours was influenced by the findings of a study by Weng et al. (OR 1.89, 95% CI 0.90, 3.97; Heterogeneity: $I^2 = 76\%$, P = 0.001)¹⁵. According to the funnel plots and Egger's tests, no evidence of publication bias was found for overall malignancy (Fig 7A), leukaemia (Fig 7B), or IVF (Fig 7C) (p = 0.464, p = 0.683, and p = 0.178, respectively).

GRADE analysis

In this study, we graded the quality of each piece of evidence. Some of the evidences (epithelial tumours and melanoma, retinoblastoma, ICSI, OI/IUI) were at a medium level, ten (overall malignancy, leukaemia, soft tissue tumours, hepatic tumours, lymphoma, CNS tumours, neuroblastoma, renal tumours, germ cells, and gonad tumours, IVF) were low, two (embryonal tumours, FET) were very low. Table 5 summarises the results of the GRADE analysis.

DISCUSSION

Based on the current evidence, our meta-analysis suggests that while ART may not be associated with an increased overall risk of malignancy, it may be linked to elevated risks of certain tumour types, including leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours, and melanoma. Subgroup analyses by ART modality, geographic region, and publication period provided further context for these associations. No significant association was found between IVF, ICSI, FET, or OI/IUI and overall malignancy risk. Regional analyses indicated a possible increased risk in North America, though this finding was marked by high heterogeneity. Temporal subgroup analyses revealed no significant trend over time. These findings underscore the importance of tumour-specific surveillance strategies, particularly for leukaemia and soft tissue tumours, and caution against overgeneralizing the conclusion of "no overall increase." Regional, temporal, and tumour-specific factors should be carefully considered in both clinical decision-making and future research.

Although the results of the comprehensive analysis are valid, it is still unclear whether ART or other factors in the recipients themselves increase the risk of tumour development. Adverse outcomes associated with ART can depend on several factors, including the underlying cause of infertility, drugs used to induce superovulation and maintain the early stages of pregnancy, and the processes involved in IVF or ICSI techniques. Examples include sperm preparation, embryo freeze-thaw, medium, conditions used for embryo growth, and delayed fertilization ³⁶. It is well known that tumours are closely related to genes. Disrupted gene expression and the deletion of gene imprinting have been observed in various childhood tumours. Drugs and procedures involved in ART can cause epigenetic modification of DNA and alter imprinted gene expression, which may lead to tumours in the offspring ³⁷. Current studies have not included the risk of tumours in children with PGD, and some recessive genetic problems cannot be ruled out. Therefore, further research is needed

to investigate the potential impact of infertility on the risk of tumours in the offspring.

Although ART may not be associated with an increased risk of overall malignancy, there was high heterogeneity among the studies. This may be related to the different types of tumours assessed in the different studies. Sixteen studies 6,10,12,14,15,20-22,27-29,31-35 (including CNS tumours, evaluated multiple tumours neuroblastoma, leukaemia, lymphoma, retinoblastoma, hepatic tumours, renal tumours, soft tissue tumours, germ cells and gonad tumours, epithelial neoplasm and melanoma, and embryonal tumours), two studies evaluated only retinoblastoma ^{18,19}, and two studies evaluated only haematological tumours ^{26,30}. Therefore, we assessed ART separately based on the risk of specific tumours in the offspring. The risks of ART and different tumour types may differ. Our results suggest that ART may not be associated with the risk of overall malignancy but may be associated with the risk of leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours, and melanoma. In addition, we did not find heterogeneity between the studies on soft tissue tumours, epithelial neoplasms, and melanoma. The publication time of the included studies spanned more than two decades, from 2001 to 2024, during which ART practices have undergone considerable evolution. Substantial variations have emerged both within and between laboratories-for example, in culture media composition, oxygen tension, and embryo cryopreservation techniques. Differences in temporal context and geographical region may also contribute to variability in clinical protocols, laboratory standards, and cancer surveillance systems, potentially influencing the observed outcomes. To investigate these potential sources of heterogeneity, we conducted subgroup analyses by geographical region and publication period. While the regional analysis suggested a statistically significant association in the North American subgroup, the limited number of studies and extremely high heterogeneity ($I^2 = 95\%$) warrant cautious interpretation. In contrast, no significant differences were observed across subgroups defined by publication period, indicating that temporal variation alone is unlikely to explain the observed heterogeneity. In addition, frozen or fresh embryo transfers may also contribute to heterogeneity, and a meta-analysis by Zhang et al. suggested that FET was associated with an increased incidence of childhood

tumours ¹¹. There is a large difference in sample size among studies, ranging from dozens to millions of cases, and the difference in sample size affects the incidence of tumours. In addition, the length of follow-up was inconsistent between the studies, and the probability of tracking tumours during the study period varied greatly.

Of the five previously published meta-analyses, two showed that ART was associated with an increased risk of tumours in children. The meta-analysis categorised children with overall malignancy, haematological tumours, CNS tumours, and other tumours but did not specifically differentiate between tumours ²⁰. A meta-analysis was based on overall tumours, haematological malignancies, leukaemia, and hepatic tumours ⁹. Consistent with the results of a previous meta-analysis, the results of our meta-analysis indicate that ART may be associated with an increased risk of leukaemia and hepatic tumours. In addition, we performed a more detailed differentiation of tumour types and found that ART may be associated with an increased risk of soft tissue tumours, epithelial tumours, and melanoma. However, there were also three meta-analyses that only analysed ART and overall malignancy without detailed differentiation of tumour types, and there were many confounding factors, which may explain why these studies finally reached the conclusion that ART was not associated with an increased risk of tumours in children ^{7,10,11}.

The strength of our study is that 24 studies were included. The studies were of high quality and included a large sample size, totalling 31,810,095, in favour of providing more reliable and accurate risk estimates. Moreover, we performed subgroup analyses for tumour and ART types while controlling for confounding factors. The sensitivity analysis results also supported the robustness of the observed association between ART and risk of malignancy in children. Moreover, there was no publication bias in the included studies and the comprehensive evaluation results were reliable.

Although we did our best to search for all relevant studies and evaluate the robustness of the results from various perspectives, certain limitations remain. In addition to soft tissue tumours, ICSI, epithelial tumours, and melanoma, other indicators (leukaemia, lymphoma, retinoblastoma, CNS tumours, neuroblastoma,

renal tumours, germ cell and gonad tumours, embryonal tumours, IVF, FET, and OI/IUI) are highly heterogeneous. Sensitivity analyses revealed that the results for leukaemia, soft tissue tumours, and hepatic tumours were not robust. The number of studies on epithelial and melanoma, embryonic tumours, ICSI, FET, and OI/IUI indicators is insufficient, resulting in small sample sizes. Therefore, these results need to be further studied. Given the paucity of studies on epithelial and melanoma tumours, embryonic tumours, ICSI, FETs, and OI/IUI, their association with malignancy risk should be treated with caution.

CONCLUSIONS

This study found that ART may not be associated with the risk of overall malignancy, and that different types of ART may not be associated with the risk of overall malignancy. However, through subgroup analysis, we found that ART may be associated with the risk of leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours, and melanoma. This suggests that we may need to pay more attention to screening for ART progeny leukaemia, soft tissue tumours, hepatic tumours, epithelial tumours and melanoma. Epithelial and melanoma tumours, as well as embryonic tumours, ICSI, FET, and OI/IUI, have been poorly studied, and their association with malignancy risk needs to be treated with caution; more research is needed to explore their relationship. Conduct larger prospective studies on specific tumor types like epithelial and melanoma, embryonic tumours, focusing on the long-term tumor risks associated with different ART techniques, and strengthen long-term follow-up and tumor registration integration.

Provenance and peer review

Not commissioned, externally peer-reviewed.

REFERENCES

1. FactsheetsandInfographics.ARTfactsheet.https://www.eshre.eu/Europe/Factsheets-and-infographics (accessed on 1 September

2024). Accessed.

2. Zhang N, Tian T, Li J, et al. A comparison of pregnancy outcomes and congenital malformations in offspring between patients undergoing intracytoplasmic sperm injection and conventional in vitro fertilization: a retrospective cohort study. *Fertil Steril.* Jun 2024;121(6):982-990. doi:10.1016/j.fertnstert.2024.01.025

3. Bruinsma F, Venn A, Lancaster P, Speirs A, Healy D. Incidence of cancer in children born after in-vitro fertilization. *Hum Reprod*. Mar 2000;15(3):604-7. doi:10.1093/humrep/15.3.604

4. Zhang JT, Lee R, Sauer MV, Ananth CV. Risks of Placental Abruption and Preterm Delivery in Patients Undergoing Assisted Reproduction. *JAMA Netw Open*. Jul 1 2024;7(7):e2420970. doi:10.1001/jamanetworkopen.2024.20970

5. Källén B, Finnström O, Nygren KG, Olausson PO. In vitro fertilization in Sweden: child morbidity including cancer risk. *Fertil Steril*. Sep 2005;84(3):605-10. doi:10.1016/j.fertnstert.2005.03.035

6. Rios P, Herlemont P, Fauque P, et al. Medically Assisted Reproduction and Risk of Cancer Among Offspring. *JAMA Netw Open*. May 1 2024;7(5):e249429. doi:10.1001/jamanetworkopen.2024.9429

7. Raimondi S, Pedotti P, Taioli E. Meta-analysis of cancer incidence in children born after assisted reproductive technologies. *Br J Cancer*. Oct 31 2005;93(9):1053-6. doi:10.1038/sj.bjc.6602838

8. Hargreave M, Jensen A, Toender A, Andersen KK, Kjaer SK. Fertility treatment and childhood cancer risk: a systematic meta-analysis. *Fertil Steril*. Jul 2013;100(1):150-61. doi:10.1016/j.fertnstert.2013.03.017

9. Wang T, Chen L, Yang T, et al. Cancer risk among children conceived by fertility treatment. *Int J Cancer*. Jun 15 2019;144(12):3001-3013. doi:10.1002/ijc.32062

10. Gilboa D, Koren G, Barer Y, et al. Assisted reproductive technology and the risk of pediatric cancer: A population based study and a systematic review and meta analysis. *Cancer Epidemiol*. Dec 2019;63:101613. doi:10.1016/j.canep.2019.101613

11. Zhang Y, Gao R, Chen H, et al. The association between fertility treatments and the incidence of paediatric cancer: A systematic review and meta-analysis. *Eur J*

Cancer. Oct 2020;138:133-148. doi:10.1016/j.ejca.2020.08.001

12. Bal MH, Harlev A, Sergienko R, et al. Possible association between in vitro fertilization technologies and offspring neoplasm. *Fertil Steril*. Jul 2021;116(1):105-113. doi:10.1016/j.fertnstert.2020.12.013

13. Luke B, Brown MB, Wantman E, et al. The risks of birth defects and childhood cancer with conception by assisted reproductive technology. *Hum Reprod*. Oct 31 2022;37(11):2672-2689. doi:10.1093/humrep/deac196

14. Sargisian N, Lannering B, Petzold M, et al. Cancer in children born after frozenthawed embryo transfer: A cohort study. *PLoS Med.* Sep 2022;19(9):e1004078. doi:10.1371/journal.pmed.1004078

15. Weng SS, Huang YT, Huang YT, Li YP, Chien LY. Assisted Reproductive Technology and Risk of Childhood Cancers. *JAMA Netw Open*. Aug 1 2022;5(8):e2230157. doi:10.1001/jamanetworkopen.2022.30157

16. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj*. Mar 29 2021;372:n71. doi:10.1136/bmj.n71

17. Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *Bmj*. Sep 21 2017;358:j4008. doi:10.1136/bmj.j4008

Bradbury BD, Jick H. In vitro fertilization and childhood retinoblastoma. *Br J Clin Pharmacol.* Aug 2004;58(2):209-11. doi:10.1111/j.1365-2125.2004.02109.x

19. Foix-L'Hélias L, Aerts I, Marchand L, et al. Are children born after infertility treatment at increased risk of retinoblastoma? *Hum Reprod*. Jul 2012;27(7):2186-92. doi:10.1093/humrep/des149

20. Hargreave M, Jensen A, Hansen MK, et al. Association Between Fertility Treatment and Cancer Risk in Children. *Jama*. Dec 10 2019;322(22):2203-2210. doi:10.1001/jama.2019.18037

21. Källén B, Finnström O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Cancer risk in children and young adults conceived by in vitro fertilization. *Pediatrics*. Aug 2010;126(2):270-6. doi:10.1542/peds.2009-3225

22. Klip H, Burger CW, de Kraker J, van Leeuwen FE. Risk of cancer in the offspring of women who underwent ovarian stimulation for IVF. *Hum Reprod*. Nov 2001;16(11):2451-8. doi:10.1093/humrep/16.11.2451

23. Lerner-Geva L, Boyko V, Ehrlich S, et al. Possible risk for cancer among children born following assisted reproductive technology in Israel. *Pediatr Blood Cancer*. Apr 2017;64(4)doi:10.1002/pbc.26292

24. Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF: Danish National IVF cohort study. *Hum Reprod.* Apr 2005;20(4):950-4. doi:10.1093/humrep/deh714

25. Mallol-Mesnard N, Menegaux F, Lacour B, et al. Birth characteristics and childhood malignant central nervous sytem tumors: the ESCALE study (French Society for Childhood Cancer). *Cancer Detect Prev.* 2008;32(1):79-86. doi:10.1016/j.cdp.2008.02.003

26. Petridou ET, Sergentanis TN, Panagopoulou P, et al. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. *Pediatr Blood Cancer*. Jun 2012;58(6):930-6. doi:10.1002/pbc.23194

27. Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. *Fertil Steril*. Sep 2010;94(4):1320-1327. doi:10.1016/j.fertnstert.2009.05.091

28. Pinborg A, Loft A, Rasmussen S, et al. Neonatal outcome in a Danish national cohort of 3438 IVF/ICSI and 10,362 non-IVF/ICSI twins born between 1995 and 2000. *Hum Reprod*. Feb 2004;19(2):435-41. doi:10.1093/humrep/deh063

29. Reigstad MM, Larsen IK, Myklebust T, et al. Risk of Cancer in Children Conceived by Assisted Reproductive Technology. *Pediatrics*. Mar 2016;137(3):e20152061. doi:10.1542/peds.2015-2061

30. Rudant J, Amigou A, Orsi L, et al. Fertility treatments, congenital malformations, fetal loss, and childhood acute leukemia: the ESCALE study (SFCE). *Pediatr Blood Cancer*. Feb 2013;60(2):301-8. doi:10.1002/pbc.24192

31. Spaan M, Pontesilli M, van den Belt-Dusebout AW, et al. Cancer risk in children,

adolescents, and young adults conceived by ART in 1983-2011. *Hum Reprod Open*. 2023;2023(3):hoad027. doi:10.1093/hropen/hoad027

32. Spaan M, van den Belt-Dusebout AW, van den Heuvel-Eibrink MM, et al. Risk of cancer in children and young adults conceived by assisted reproductive technology. *Hum Reprod.* Apr 1 2019;34(4):740-750. doi:10.1093/humrep/dey394

33. Spector LG, Brown MB, Wantman E, et al. Association of In Vitro Fertilization With Childhood Cancer in the United States. *JAMA Pediatr*. Jun 1 2019;173(6):e190392. doi:10.1001/jamapediatrics.2019.0392

34. Sundh KJ, Henningsen AK, Källen K, et al. Cancer in children and young adults born after assisted reproductive technology: a Nordic cohort study from the Committee of Nordic ART and Safety (CoNARTaS). *Hum Reprod.* Sep 2014;29(9):2050-7. doi:10.1093/humrep/deu143

35. Wainstock T, Walfisch A, Shoham-Vardi I, et al. Fertility treatments and pediatric neoplasms of the offspring: results of a population-based cohort with a median follow-up of 10 years. *Am J Obstet Gynecol*. Mar 2017;216(3):314.e1-314.e14. doi:10.1016/j.ajog.2017.01.015

36. Lightfoot T, Bunch K, Ansell P, Murphy M. Ovulation induction, assisted conception and childhood cancer. *Eur J Cancer*. Mar 2005;41(5):715-24; discussion 725-6. doi:10.1016/j.ejca.2004.07.032

37. Feinberg AP, Tycko B. The history of cancer epigenetics. *Nat Rev Cancer*. Feb 2004;4(2):143-53. doi:10.1038/nrc1279

Figure legends

Figure 1. PRISMA flow diagram

Figure 2. Forest plot of overall malignancy for ART versus NP.

-

	A	RT		(P		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Random, 95% C	<u> </u>	M-H. Random, 95% Cl
Bal 2021	3	1583	8	5874	1,6%	1.39 [0.37, 5.25]		and a strength of the strength
Bradbury 2004	0	176	24	358094	0.5%	41.40 [2.51, 683.47]		
Foix-L'Hélias 2012	. 9	738	218	12860	3.6%	0.72 [0.37, 1.40]		
Gilboa 2019	85	64317	988	713165	5.8%	0.95 [0.76, 1.19]		+
Hargreave 2019	84	36221	1876	910291	5.8%	1.13 [0.90, 1.40]		t
Klip 2001	53	26692	6405	2391186	5.6%	0.74 [0.57, 0.97]		*
Källén 2010	. 5	34302	9	58764	2.1%	0.95 [0.32, 2.84]		1
Lemer-Geva 2016	21	95583	361	1964123	4.8%	1.20 [0.77, 1.86]		+
Lidegaard 2005	0	6052	72	442349	0.5%	0.50 [0.03, 8.14]		10 E E E
Luke 2022	259	177576	1469	1353440	6.1%	1.34 [1.18, 1.53]		•
Maliol-Mesnard 2008	11	93	198	1797	3.7%	1.08 [0.57, 2.07]		+
Petridou 2012	40	153	1642	8530	5.1%	1.48 [1.03, 2.14]		-
Pinborg 2004	0	6786	22	20478	0.5%	0.07 (0.00, 1.10)	8 =	
Pinborg 2010	6	11286	1	4800	0.8%	2.55 [0.31, 21.21]		
Reigstad 2016	49	25782	4414	1602876	5.5%	0.69 [0.52, 0.91]		*
Rics 2024	292	260236	8964	8266070	6,1%	1.03 [0.92, 1.16]		
Rudant 2013	15	46	644	2132	3.8%	1.12 [0.60, 2.09]		+
Sargisian 2022	329	171774	16184	7772474	6,1%	0.92 [0.82, 1.03]		1
Spaan 2019	93	24269	92	13761	5.5%	0.57 [0.43, 0.76]		~
Spaan 2023	157	51417	201	37832	5.8%	0.57 [0.47, 0.71]		-
Specior 2019	321	146875	2042	2194854	8,1%	2.35 [2.09, 2.65]		
Sundh 2014	181	91795	638	358419	6.0%	1.11 [0.94, 1.31]		t
Wainstock 2017	7	2603	415	237863	3.3%	1.54 (0.73, 3.26)		
Weng 2022	47	47152	1417	1794555	5,5%	1.26 [0.94, 1.69]		-
Total (95% CI)		1283508		30526587	100.0%	1.04 (0.86, 1.27)		+
Total events	2067		48304			0.8.2		
Heterogeneity: Tau ^a = (0.16; ChP	= 276.79,	df = 23 (P	< 0.00001)	F = 92%		0.004	
Test for overall effect: 2	2 = 0.41 (8	P = 0.68)					0.001	Favours (ART) Favours (NP)

Figure 3. Forest plot of A. leukaemia, B. soft tissue tumours, C. hepatic tumours, D. epithelial tumours, and melanoma for ART versus NP.

Figure 4. Forest plots of A. lymphoma, B. retinoblastoma, C. central nervous system, and D. neuroblastoma for ART versus NP

Figure 5. Forest plot of A. renal tumours, B. germ cell and gonad tumours, and C. embryonal tumours for ART versus NP

Figure 6. Forest plots of A. IVF, B. ICSI, C. FET, and D. OI/IUI with overall malignancy

Figure 7. Funnel plots of A. overall malignancy, B. leukaemia, and C. IVF

Database	Search term	Number
PubMed	#1: ((assisted reproductive technology) OR (ART) OR	#1:
(Title/Abstract)	(Intrauterine insemination) OR (IUI) OR (in vitro	225682
	fertilization) OR (IVF) OR (intracytoplasmic sperm	

	injection) OR (ICSI) OR (preconception genetic	
	diagnosis) OR (PGD) OR (Oocyte in vitro maturation)	
	OR (IVM))	
	#2: ((children) OR (offspring) OR (adolescent) OR	#2:
	(pediatric))	1699068
	#3: ((cancer) OR (tumor) OR (neoplasm))	#3:
		3190528
	#4: #1 AND #2 AND #3	#4: 741
Embase	#1: ((assisted reproductive technology) OR (ART) OR	#1:
(ab,ti.)	(Intrauterine insemination) OR (IUI) OR (in vitro	293482
	fertilization) OR (IVF) OR (intracytoplasmic sperm	
	injection) OR (ICSI) OR (preconception genetic	
	diagnosis) OR (PGD) OR (Oocyte in vitro maturation)	
	OR (IVM))	
	#2: ((children) OR (offspring) OR (adolescent) OR	#2:
	(pediatric))	2143291
	#3: ((cancer) OR (tumor) OR (neoplasm))	#3:
		4322834
	#4: #1 AND #2 AND #3	#4: 1280
Cochrane	#1: ((assisted reproductive technology) OR (ART) OR	#1:
(MeSH)	(Intrauterine insemination) OR (IUI) OR (in vitro	31327
	fertilization) OR (IVF) OR (intracytoplasmic sperm	
	injection) OR (ICSI) OR (preconception genetic	
	diagnosis) OR (PGD) OR (Oocyte in vitro maturation)	
	OR (IVM))	
	#2: ((children) OR (offspring) OR (adolescent) OR	#2:
V	(pediatric))	331060
	#3: ((cancer) OR (tumor) OR (neoplasm))	#3:
		265199
	#4: #1 AND #2 AND #3	#4: 373
Web of	#1: ((assisted reproductive technology) OR (ART) OR	#1:
Science	(Intrauterine insemination) OR (IUI) OR (in vitro	1009546
(TS)	fertilization) OR (IVF) OR (intracytoplasmic sperm	

injection) OR (ICSI) OR (preconception genetic										
diagnosis) OR (PGD) OR (Oocyte in vitro maturation)										
OR (IVM))										
#2: ((children) OR (offspring) OR (adolescent) OR	#2:									
(pediatric))	2685995									
#3: ((cancer) OR (tumor) OR (neoplasm))	#3:									
	4528682									
#4: #1 AND #2 AND #3	#3: 1730									

Table 2.	Study chara	cteristics and	d outco	mes.					
First	Country	Study	Deta	No.	of	No.	of	Type of tu	umor
author,		design	ils of	cases		control			
year			ART	(Treate	d/t	(Treated/	'tot		
				otal)		al)			
Bal	Israel	retrospec	IVF	17/1,58	83	29/5,874		Leukemia	;
2021		tive						lymphom	a;
		cohort						brain and	l spinal
		study						cord	tumors
								(medullo	olasto
								ma	or
								Astrocyto	ma);
								connectiv	ve
								tissue o	r skin;
								adrenal	or
								kidney;	bone
	v							cancer	
								(osteosar	coma
								or	Ewing
								sarcoma)	;
								ophthalm	nic
Bradbu	USA	retrospec	IVF	0/176		24/358,0	94	Retinobla	stoma
ry 2004		tive							

Table 2. Study characteristics and outcomes.

		cohort study				
Foix-	France	case-	IVF	9/729	218/12.642	Retinoblastoma
L'Hélias		control	IUI	0,1 =0	,,	
2012		study				
-		,				
Gilboa	Israel	prospecti	IVF	85/64,317	988/713,16	Overall
2019		ve cohort	ICSI		5	malignancy
		study	FET			
			IUI			
Hargre	Denmark	retrospec	IVF	84/36,221	1,876/910,2	Leukemia;
ave		tive	ICSI		91	lymphoma;
2019		cohort	FET			central nervous
		study				system tumors;
						sympathetic
						nervous system
						tumors; other
						types of cancer
Källén	Sweden	prospecti	IVF	53/26,692	6,405/2,391	Hematologic
2010		ve cohort			,186	neoplasms;
		study				histiocytosis;
						central nervous
						system or eye
		~				neoplasms; soft
						tissue
						neoplasms;
						adenocarcinom
						as
Klip	The	retrospec	IVF	5/34,302	9/58,764	Keukemia;
2001	Netherla	tive				lymphoma;
	nds	cohort				central nervous

		study				system tumors;
						sympathetic
						nervous system
						tumors; renal
						tumors; wilms'
						tumors;
						malignant bone
						tumors; soft-
						tissue, germ-
						cell, and
						gonadal tumors
Lerner-	Israel	retrospec	IVF	21/95,583	361/1,964,1	Retinoblastoma;
Geva		tive	ICSI		23	renal tumor;
2016		cohort				leukemia;
		study				lymphoma;
						other types of
						cancer
Lidegaa	Denmark	prospecti	IVF	0/6052	72/442,349	Kidney cancer;
rd 2005		ve cohort				retinoblastoma;
		study				acute
						myeloblastic
						leukemia
Luke	USA	retrospec	IVF	259/177,5	1,469/	Leukemia;
2022		tive	ICSI	76	1,353,440	central nervous
		cohort	OI/I			system tumors;
		study	UI			embryonal
						tumors; solid
						tumors
Mallol-	France	case-	NA	11/93	198/1,797	Central nervous
Mesnar		control				system tumors
d 2008		study				

u 2012 control study lymphoma study Denmark prospecti IVF 12/10,329 1/4800 Overall 2010 ve cohort ICSI study 22/20,478 Acute 2004 prospecti IVF 0/6,786 22/20,478 Acute 19mphoblastic study istudy ist	
PinborgDenmarkprospectiIVF12/10,3291/4800Overall malignancy studyPinborgDenmarkprospectiICSI	
study Pinborg Denmark prospecti IVF 0/6,786 22/20,478 Acute 2004 ve cohort ICSI lymphoblastic study leukemia; astrocytoma; nonspecific	
Pinborg Denmark prospecti IVF 0/6,786 22/20,478 Acute 2004 ve cohort ICSI lymphoblastic study leukemia; astrocytoma; nonspecific	
tumors of t heart, bra adrenal glan and soft tissue	the ain, ids, es
Reigsta Norway prospecti IVF 49/25,782 4,414/1,602 Leukemia; d 2016 ve cohort ICSI ,876 lymphoma; study central nervo system tumo neuroblastom retinoblastom nonspecific tumors of t renal, hepa bone, germ o and soft tissue	ous ors; na; na; the tic, cell es
RiosFranceretrospecfresh292/260,28,964/8,266Leukemia;2024tiveET36.070lymphoma;	

		cohort	FET		central nervous
		study	AI		system tumors;
					embryonal
					tumor;
					retinoblastoma;
					epithelial
					neoplasm and
					melanoma;
					malignant bone
					tumor; soft
					tissue sarcoma;
					germ cell and
					gonad tumor
Rudant	France	case-	IVF 30/61	342/784	Acute leukemia
2013		control	AI		
		study			
Sargisia	Sweden	retrospec	fresh 329/171,7	16,184/	Leukemia;
n 2022		tive	ET 74	7,772,474	lymphoma;
		cohort	FET		central nervous
		study	IVF		system tumors;
					neuroblastoma
					and other
					peripheral
					nervous cell
					tumors;
					retinoblastoma;
					renal tumors,
					hepatic and
					bone tumors;
					soft tissue
					sarcomas; germ

						cell and gonad
						tumor;
						epithelial
						neoplasm and
						melanoma
Spaan	The	prospecti	FET	157/51,41	201/37,832	Head, neck,
2023	Netherla	ve cohort	IVF	7		salivary glands,
	nds	study	ICSI			digestive
						organs, bone,
						joints, soft
						tissue, skin,
						melanoma,
						breast, female
						genital tract,
						male genital
						tract, urinary
						tract, eye,
						adnexa, brain,
						endocrine
						glands, and
						other parts of
						central nervous
						system tumors;
		~				kaposi sarcoma;
						lymphohemato
						poietic
						malignancies
Spaan	The	prospecti	IVF	93/24,269	92/13,761	Head, neck,
2019	Netherla	ve cohort	ICSI			salivary glands,
	nds	study				digestive
						organs, bone,

						joints,	soft
						tissue,	skin,
						melano	ma,
						breast,	female
						genital	tract,
						male	genital
						tract,	urinary
						tract,	eye,
						adnexa,	brain,
						endocri	ne
						glands,	and
						other	parts of
						central	nervous
						system	tumors;
						kaposi :	sarcoma;
						lympho	hemato
						poietic	
						maligna	incies
Spector	USA	retrospec	IVF	321/146,8	2,042/2,194	Leukem	ia;
2019		tive		75	,854	lympho	ma;
		cohort				central	nervous
		study				system	tumors;
						astrocyt	toma;
						ependy	moma;
						intracra	nial
						embryo	nal
						tumors;	, ,
						neurobl	astoma;
						retinob	lastoma;
						renal,	hepatic,
						germ (cell and

						soft	tissues
						tumors;	
						embryor	nal
						tumors	
Sundh	Sweden	retrospec	FET	181	638/358,41	Leukemi	a;
2014		tive	IVF	/91,796	9	lymphon	na;
		cohort	ICSI			central	nervous
		study				system	tumors;
						neurobla	astoma
						and pe	ripheral
						nervous	cell
						tumors;	
						retinobla	astoma;
						renal,	hepatic,
						germ ce	ll, bone,
						and soft	: tissues
						tumors;	
						embryor	nal
						tumors;	other
						malignar	nt
						epithelia	ıl
						neoplasr	ns
Wainst	Israel	retrospec	IVF	29/2603	1450/237,8	Head,	neck,
ock		tive			63	salivary	glands,
2017		cohort				digestive	ć
		study				organs,	bone,
						joints,	soft
						tissue,	skin,
						melanon	na,
						breast,	female
						genital	tract,

						male	gei	nital
						tract,	uriı	nary
						tract,		eye,
						adnexa,	bı	rain,
						endocri	ne	
						glands,		and
						other p	parts	of
						central	nerv	/ous
						system	tum	ors;
						leukemi	a;	
						lympho	ma;	
						hemang	gioma	à
Weng	China	retrospec	FET	47/47,152	1,417/1,794	Leukem	ia;	
2022	Taiwan	tive	IVF		,555	lympho	ma;	
		cohort	ICSI			hepatic	tum	ors;
		study				central	nerv	/ous
						system	tum	ors;
						neurobl	astor	ma;
						retinobl	astoi	ma;
						renal, g	erm	cell,
						bone, a	and	soft
						tissues t	tumo	ors;
	at at a d	المعالية المعالمة		Г Г Т б		f.		

ART, assisted reproductive technology; FET, frozen embryo transfer; ICSI, intracytoplasmic sperm injection; IUI, intrauterine insemination; IVF, in-vitro fertilization; OI, ovulation **Table 3.** Outcome of assessment of the quality of non-randomized studies using the Newcastle-Ottawa scale.

Coho	Selection	Comparab	Outcome
		ility	

rt	Repres	Selection	Ascert	Outc	а	Most	Asses	Follo	Ade	То
studi	entativ	of non-	ainme	ome	g	of	S-	w-up	quac	tal
es	e-ness	exposed	nt	not	e	additio	ment	long	y of	sc
	of the	cohort	of	pres		nal	of	enoug	follo	or
	expose		exposu	ente		factors	outco	h	w up	e
	d		re	d at			me			
	cohort			the						
				start						
Bal	*	*	*	*	*	Delive	*	*	*	8/
2021						ry and				9
						newbo				
						rn				
						charac				
						teristic				
						s				
Brad	*	*	*	*	*	-	*	*	*	8/
bury										9
2004										
Gilb	*	*	*	*	-	-	*	*	*	7/
ba										9
2019										
Harg	*	*	*	*	*	*	*	*	*	9/
reav										9
e										
2019										
Käll	*	*	*	*	*	*	*	*	*	9/
én										9
2010										
Klip	*	*	*	*	-	-	*	*	*	7/
2001										9
Lern	*	*	*	*	-	-	*	*	*	7/
er-										9
Gev										

а										
2016										
Lide	*	*	*	*	-	-	*	*	*	7/
gaar										9
d										
2005										
Luke	*	*	*	*	-	*	*	*	*	8/
2022										9
Pinb	*	*	*	*	-	*	*	*	*	8/
org										9
2010										
Pinb	*	*	*	*	-	-	*	*	*	7/
org										9
2004										
Reig	*	*	*	*	-	-	*	*	*	7/
stad										9
2016										
Rios	*	*	*	*	-	*	*	*	*	8/
2024										9
Sarg	*	*	*	*	-	*	*	*	*	8/
isian										9
2022										
Spaa	*	*	*	*	-	-	*	*	*	7/
n										9
2023										
Spaa	*	*	*	*	-	-	*	*	*	7/
n										9
2019										
Spec	*	*	*	*	-	-	*	*	*	7/
tor										9
2019										
Sund	*	*	*	*	*	*	*	*	*	9/
h										9

2014											
Wain	*		*	*	*	-	-	*	*	*	7/
stoc											9
k											
2017											
Wen	*		*	*	*	*	*	*	*	*	9/
g 2022											9
Case	Sele	ection				Co	mparab	Outcon	ne		
-						ilit	у				
contr	Is	the	Represen	Selecti	Defi	a	Most	Asses	Same	Non	То
ol	case	•	tativenes	on of	nitio	g	of	smen	metho	-	tal
studi	defi	niti	s of the	Contro	n of	e	additio	t of	d of	Resp	sc
es	on		cases	ls	Cont		nal	outco	ascert	onse	or
	adeo	quat			rols		factors	me	ainme	rate	e
	e?								nt for		
									cases		
									and		
									contro		
									ls		
Mall	*		*	*	*	-	-	*	*	*	7/
ol-											9
Mes											
nard											
2008											
Petri	*		*	*	*	*	*	*	*	*	9/
dou		v									9
2012											
Rud	*		*	*	*	-	*	*	*	-	7/
ant											9
2013											
Foix	*		*	*	*	*	*	*	*	*	9/
-											9

L'Hé
lias
2012

A single asterisk (*) indicates 1 score, and dash (-) indicates 0 score.

	No. of			Test of	
	studies			heterogen	neity
Outcome		OR (95% CI)	p value	I ²	p value
Overall malignancy	24	1.04 (0.86, 1.27)	0.68	92%	<
					0.00001
Leukemia	13	1.24 (1.03, 1.50)	0.02	59%	0.003
Soft tissue tumors	9	1.35 (1.08, 1.68)	0.009	38%	0.12
Hepatic tumors	7	2.10 (1.15, 3.85)	0.09	71%	0.002
Epithelial tumors and	3	1.50 (1.12, 1.99)	0.006	3%	0.36
melanoma					
Lymphoma	10	0.96 (0.65, 1.43)	0.85	68%	0.0009
Retinoblastoma	10	1.12 (0.69, 1.81)	0.64	57%	0.01
CNS tumors	10	1.14 (0.86, 1.51)	0.38	74%	< 0.0001
Neuroblastoma	7	1.24 (0.67, 2.28)	0.49	78%	0.0001
Renal tumors	6	1.13 (0.69, 1.84)	0.62	73%	0.002
Germ cells and	6	1.11 (0.46, 2.73)	0.81	82%	< 0.0001
gonad tumors					
Embryonal tumors	2	1.62 (0.61, 4.28)	0.33	98%	<
					0.00001
IVF	13	1.25 (0.84, 1.84)	0.27	88%	<
					0.00001
ICSI	2	1.18 (0.84, 1.67)	0.34	0	0.51
FET	2	1.23 (0.49, 3.12)	0.66	90%	0.002
OI/IUI	2	1.03 (0.40, 2.66)	0.95	50%	0.16
Asia	5	1.09 (0.93, 1.24)	0.31	0%	0.48
North America	3	2.00 (1.14, 3.53)	0.02	95%	<

Table 4. Summary of the results of the meta-analysis.

Λ	n	n	n	Λ	1
υ	υ	υ	υ	υ	I

Europe	16	0.88 (0.76, 1.03)	0.11	75%	<
					0.00001
Before 2010	7	0.99 (0.52, 1.90)	0.99	55%	0.04
Between 2010 and	11	1.09 (0.78, 1.51)	0.62	94%	<
2020					0.00001
After 2020	6	0.99 (0.79, 1.26)	0.96	90%	<
					0.00001

CNS, central nervous system; FET, frozen embryo transfer; ICSI, intracytoplasmic sperm injection; IUI, intrauterine insemination; IVF, in-vitro fertilization; OI, analysis. ovulation

Table 5. Summar	v of	the	results	of the	GRADE	analysis.

	Anticipated absolute ef- fects [*] (95% CI)		Relative ef-	Nº of partici-	Certainty of the ev-
Outcomes	Risk with Non ART	Risk with ART	fect (95% CI)	pants (studies)	idence (GRADE)
Overall malignancy	2 per 1,000	2 per 1,000 (1 to 2)	OR 1.04 (0.86 to 1.27)	31810095 (24 non- randomised studies)	$\underset{Low^{a}}{\oplus \bigoplus \bigcirc}$
Leukemia	1 per 1,000	1 per 1,000 (1 to 1)	OR 1.24 (1.03 to 1.50)	23565992 (13 non- randomised studies)	$\underset{Low^{b}}{\oplus \bigcirc \bigcirc}$
Soft tissue tumors	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.35 (1.08 to 1.68)	23070035 (9 non- randomised studies)	$\underset{Low^{b}}{\oplus \bigcirc \bigcirc}$
Hepatic tumors	0 per 1,000	0 per 1,000 (0 to 0)	OR 2.10 (1.15 to 3.85)	22822112 (7 non- randomised studies)	$\underset{Low^{b,c}}{\bigoplus}$
Epithelial tumors and melanoma	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.50 (1.12 to 1.99)	16920769 (3 non- randomised studies)	⊕⊕⊕⊖ Moderate
Lymphoma	0 per 1,000	0 per 1,000 (0 to 0)	OR 0.96 (0.65 to 1.43)	21267693 (10 non- randomised studies)	

	Anticipated absolute ef- fects [*] (95% CI)		Relative ef-	N⁰ of partici-	Certainty of the ev-
Outcomes	Risk with Non ART	Risk with ART	fect (95% CI)	pants (studies)	idence (GRADE)
Retinoblastoma	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.12 (0.69 to 1.81)	23642154 (10 non- randomised studies)	⊕⊕⊕⊖ Moderate
CNS tumors	0 per 1,000	0 per 1,000 (0 to 1)	OR 1.14 (0.86 to 1.51)	23102498 (10 non- randomised studies)	⊕⊕⊖⊖ Low ^e
Neuroblastoma	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.24 (0.67 to 2.28)	14536272 (7 non- randomised studies)	
Renal tumors	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.13 (0.69 to 1.84)	22732863 (6 non- randomised studies)	⊕⊕⊖⊖ Low ^g
Germ cells and gonad tumors	0 per 1,000	0 per 1,000 (0 to 0)	OR 1.11 (0.46 to 2.73)	22732863 (6 non- randomised studies)	$\underset{Low^h}{\oplus \bigcirc \bigcirc}$
Embryonal tumors	0 per 1,000	0 per 1,000 (0 to 1)	OR 1.62 (0.61 to 4.28)	10868035 (2 non- randomised studies)	⊕○○○ Very low
IVF	2 per 1,000	2 per 1,000 (2 to 4)	OR 1.25 (0.84 to 1.84)	7613937 (13 non- randomised studies)	
ICSI	2 per 1,000	2 per 1,000 (2 to 3)	OR 1.18 (0.84 to 1.67)	932157 (2 non- randomised studies)	⊕⊕⊕⊖ Moderate
FET	1 per 1,000	1 per 1,000 (1 to 4)	OR 1.23 (0.49 to 3.12)	9245882 (2 non- randomised studies)	⊕○○○ Very low
OI/IUI	1 per 1,000	1 per 1,000 (0 to 3)	OR 1.03 (0.40 to 2.66)	1378986 (2 non- randomised studies)	⊕⊕⊕⊖ Moderate

Explanations

a. Downgraded because the I² value was 92%

b. Sensitivity analysis showed that the robustness of the results was affected by individual study

- c. Downgraded because the I^2 value was 71%
- d. Downgraded because the I^2 value was 68%
- e. Downgraded because the I^2 value was 74%
- f. Downgraded because the I² value was 78%
- g. Downgraded because the I² value was 73%
- h. Downgraded because the I^2 value was 82%
- i. Downgraded because the I² value was 88%

Highlights:

- **ART** may not be associated with an increased risk of overall malignancy.
- 2 ART may be associated with an increased risk of leukaemia, soft tissue

tumours, hepatic tumours, epithelial tumours, and melanoma.

Subgroup analyses based on different ART types found that IVF, ICSI, FET,

and OI/IUI may not be associated with an increased risk of overall malignancy.

Supplementary Methods 1: http://links.lww.com/JS9/E195 Supplementary Methods 2: http://links.lww.com/JS9/E196