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Abstract

IMPORTANCE Optimizing irradiation volumes and evaluating the effect of dose escalation on total
and fractionated doses are critical for improving outcomes in high-grade glioma (HGG).

OBJECTIVE To assess the efficacy of modified target delineation guided by multimodal magnetic
resonance imaging and white matter tracts combined with moderately hypofractionated
simultaneous boost intensity-modulated radiotherapy (HSIB-IMRT) in patients with newly
diagnosed HGG.

DESIGN, SETTING, AND PARTICIPANTS This single-center, 2-arm, open-label randomized clinical
trial enrolled 154 patients aged 18 to 70 years with histologically confirmed, newly diagnosed HGG at
a Chinese medical center from January 1, 2018, to August 31, 2022. Follow-up was completed in
June 2024.

INTERVENTIONS Patients were randomized to receive modified target delineation guided by
multimodal magnetic resonance imaging and white matter tracts combined with HSIB-IMRT
(experimental arm) or standard IMRT per guideline recommendations (standard arm). Both arms
received concurrent and adjuvant temozolomide chemotherapy.

MAIN OUTCOMES AND MEASURES The primary end point was progression-free survival (PFS).
The secondary end point was overall survival (OS).

RESULTS Among 154 enrolled patients (76 in the experimental arm and 78 in the standard arm; 85
[55.2%] male; median [range] age, 51.5 [23.0-70.0] years), the median (range) follow-up duration
was 22 (4-76) months, with 96 deaths by June 2024. The median PFS was 15.5 months (95% CI, 11.7-
19.3 months) in the experimental arm and 13.5 months (95% CI, 8.7-18.3 months) in the standard arm
(P = .89). The median OS was 27.0 months (95% CI, 13.9-40.1 months) in the experimental arm and
21.0 months (95% CI, 18.0-24.0 months) in the standard arm (P = .24). The clinical target volume in
the experimental arm (CTV1: median [range], 116.7 [20.2–370.7 cm3]; CTV2: median [range], 174.4
[34.5-463.2 cm3]) was significantly smaller than the clinical target volume in the standard arm
(median [range], 225.0 [70.2-542.1 cm3]; P < .001). Recurrence rates within, outside, and
multicentric to the target volume were comparable between arms. Grade 3 or 4 adverse events
occurred in 4 patients (5.3%) in the experimental arm and 3 (3.8%) in the standard arm (P = .72).

CONCLUSIONS AND RELEVANCE In this randomized clinical trial, modified target delineation with
HSIB-IMRT demonstrated comparable PFS and OS to standard IMRT in patients with newly
diagnosed HGG, while significantly reducing the irradiation target volume without increasing the

(continued)

Key Points
Question Does modified target

delineation combined with moderately

hypofractionated simultaneous boost

intensity-modulated radiotherapy

(HSIB-IMRT) improve the clinical

outcomes for patients with newly

diagnosed high-grade glioma (HGG)?

Findings In this randomized clinical trial

of 154 patients with HGG, modified

target delineation combined with

moderately HSIB-IMRT did not improve

progression-free or overall survival;

however, it significantly reduced the

irradiation target volume compared with

standard IMRT. The experimental

approach demonstrated equivalent

efficacy to standard IMRT, without

increasing the recurrence outside the

target volume.

Meaning These results suggest that

modified target delineation combined

with HSIB-IMRT provides clinical

efficacy comparable to standard IMRT

for newly diagnosed HGG compared

with the potential for reduced

irradiation volumes.

+ Visual Abstract

+ Invited Commentary

+ Supplemental content

Author affiliations and article information are
listed at the end of this article.

Open Access. This is an open access article distributed under the terms of the CC-BY License.

JAMA Network Open. 2025;8(7):e2523053. doi:10.1001/jamanetworkopen.2025.23053 (Reprinted) July 24, 2025 1/14

Downloaded from jamanetwork.com by guest on 08/14/2025

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.23053&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.23053
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.23064&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.23053
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2025.23053&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2025.23053


Abstract (continued)

recurrence rates outside the target volume. These results suggest valuable insights for future
research aimed at personalized, reduced volume strategies to optimize outcomes and minimize
neurotoxicity in HGG.
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Introduction

High-grade gliomas (HGGs), particularly glioblastoma, are characterized by aggressive progression
and poor prognosis, emphasizing the need to investigate better treatment strategies.1,2 Notably,
HGGs pose a unique neurocognitive burden: more than 50% of patients with brain or central nervous
system tumors develop moderate-to-severe cognitive impairment—the highest rate observed across
all cancer types. This dual challenge of limited survival and high neurotoxicity risk highlights the
urgent need for therapeutic strategies that achieve both effective tumor control and cognitive
preservation, a patient-centered goal often undermined by conventional treatment intensification.3

According to the 2016 Radiotherapy and Oncology Group (RTOG)/NRG Guidelines, the clinical
target volume (CTV) of HGGs, which is considered a high-risk factor for subclinical and microscopic
glioma cell spread, is defined as the volume expanded 2 cm from the resection cavity plus cytotoxic
edema.1 This approach has remained relatively unchanged during the past 2 decades despite
advances in precision radiotherapy.2 Brain white matter tracts, composed of myelinated nerve fibers,
serve as pathways for glioma cell migration. Since Scherer’s seminal work,4 it has been established
that glioma cells preferentially spread along white matter tracts rather than infiltrating uniformly in all
directions.5-7 These tracts facilitate long-range migration of glioma cells to distant brain regions.4,8

Conventional CTV expansion techniques do not account for the anisotropic nature of glioma cell
infiltration, often resulting in excessive irradiation of normal brain tissue. Multimodal magnetic
resonance imaging (MRI), including diffusion tensor imaging and T2-weighted and fluid-attenuated
inversion recovery (FLAIR) sequences, provides valuable information on glioma cell infiltration
pathways and cytotoxic edema. Therefore, refining CTV delineation along the white matter tracts
using multimodal MRI may reduce irradiation volumes in patients with HGG.

Although most total dose–escalated radiotherapy regimens showed no significant survival
benefit over conventional fractionation (60 Gy in 30 fractions) in glioblastoma, preliminary evidence
suggests that moderately hypofractionated simultaneous boost intensity-modulated radiotherapy
(HSIB-IMRT) exhibits favorable tolerability in this patient population.9 In a retrospective analysis10 of
80 patients with newly diagnosed glioblastoma treated with HSIB-IMRT at our institution, the
median overall survival (OS) was 21 months, the median progression-free survival (PFS) was 15
months, and the 5-year OS rate was 13.4%. Building on these findings, we conducted a single-center
randomized clinical trial to compare the efficacy and safety of multimodal MRI and white matter
tract–guided target delineation combined with HSIB-IMRT vs RTOG-recommended standard IMRT in
patients with newly diagnosed HGG.2

Methods

Study Design
This single-center, 2-arm, intention-to-treat, open-label randomized clinical trial (see the trial protocol
in Supplement 1) was approved by the Ethics Committee of the Army Medical University and registered
in the Chinese Clinical Trial Registration Center. All participants provided written informed consent. The
study followed the Consolidated Standards of Reporting Trials (CONSORT) reporting guideline.
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Eligibility Criteria and Randomization
Patients who met the following criteria were enrolled at a Chinese medical center from January 1, 2018,
to August 31, 2022: (1) pathologically confirmed HGG per the 2016 World Health Organization classifica-
tion of the central nervous system tumors after surgical resection or biopsy11; (2) expected survival time
of 3.0 months or longer; and (3) age of 18 to 70 years (Figure 1). Of the 160 patients evaluated for eligi-
bility, 6 were excluded. Patients were randomized in a 1:1 ratio to experimental or standard arm using
computer-generated random numbers. An independent statistician, uninvolved in recruitment or out-
come assessment, prepared the randomization list. Allocation concealment was maintained using
opaque, sealed envelopes opened only after baseline assessments, ensuring investigators remained
blinded to group assignments until randomization. Participants' race and ethnicity were not specifically
collected or reported in this study because the study population was highly homogeneous, consisting
exclusively of individuals recruited from a single geographic region within China. Within the context of
this specific clinical investigation and its objectives, race and ethnicity were not considered relevant
variables or potential confounders for the outcomes being assessed.

Computed Tomography Simulation Positioning, Scanning, and Image Registration
All patients underwent preoperative and postoperative brain multimodal MRI, including T1-weighted,
T2-weighted, T2-weighted and FLAIR or apparent diffusion coefficient, diffusion tensor imaging,
diffusion-weighted imaging, and 3-dimensional magnetic resonance spectroscopy. Between 2 and 6
weeks after surgery, patients were positioned supinely with their heads secured in a customized immo-
bilization and underwent computed tomography (CT) simulation. CT images were then transferred to
the treatment planning system (Varian Medical Systems). Multimodal MRIs were integrated into the
planning system and registered to the simulation CT images for treatment planning.

Target Volume Definition and Irradiation Dosage Prescription
In the experimental arm, target volumes were delineated using multimodal MRIs and white matter
tract anatomical atlas.12 Gross tumor volume (GTV) comprised the resection cavity plus residual T1
contrast-enhancing tumor (if present). The CTV was defined as (1) CTV1, including GTV and cytotoxic
edema identified on preoperative and postoperative multimodal MRI, and (2) CTV2, expanding 1 cm
from CTV1 along white matter tracts, excluding adjacent brain gyrus with normal MRI signals
(eMethods in Supplement 2). Margins were modified to avoid organs at risk. Planning target volumes
(PTVs) were generated expanding 3 mm from GTV, CTV1, and CTV2 to create PGTV, PCTV1, and
PCTV2, respectively. The prescribed HSIB-IMRT doses were 64 to 66 Gy to PGTV, 60 to PCTV1, and
54 Gy to PCTV2 in 27 fractions (once daily 5 days per week).

Figure 1. Study Flow Diagram
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In the standard arm, the GTV was defined similarly, with the CTV comprising the GTV plus a
2-cm margin and cytotoxic edema area, per RTOG recommendations.2 The PGTV and PCTV were
obtained by expanding 3 mm from the GTV and CTV, respectively, with margin adjustment for organs
at risk. Standard IMRT delivered 50 Gy in 25 fractions to PCTV in the first phase and followed by 10
Gy in 5 fractions to PGTV in the second phase (2 Gy/d 5 days/week). Target volumes for both arms
were finalized by a multidisciplinary glioma team (Figure 2).

Concurrent and Adjuvant Chemotherapy
Patients in both arms received concurrent temozolomide chemotherapy (75 mg/m2 daily) during
radiotherapy and 6 cycles of adjuvant temozolomide chemotherapy (150-200 mg/m2/d for 5 days
every 4 weeks).13 The total number of temozolomide cycles was determined according to the
patients’ general condition, adherence, economic situation, and disease progression.

Follow-Up, Efficacy Evaluation, and Adverse Event Monitoring
Patients were monitored weekly during radiotherapy through medical record reviews, physical
examinations, and hematologic tests, followed by monthly assessment after radiotherapy. MRI
assessments were conducted at 1 and 3 months after radiotherapy and every 3 months thereafter.
When tumor progression or necrosis could not be confirmed by routine MRI, additional imaging
(eg, multimodal MRI and positron emission tomography plus CT) was conducted. Follow-up was
completed in June 2024. Treatment response was assessed according to the Response
Assessment in Neuro-Oncology (RANO) criteria.4 Tumor recurrence or progression was
confirmed by multidisciplinary team discussion or pathological examinations after subsequent
operation. Recurrence patterns were categorized into 3 types: (1) within the target volume
(CTV2 for the experimental arm and CTV for the standard arm), (2) outside the target volume,
or (3) multicentric (defined as simultaneous recurrence inside and outside the target volume or
within and outside the brain parenchyma). Adverse events were monitored via routine
hematologic tests, symptoms inquiries, and medical examinations, graded according to RTOG and
the European Organisation for Research and Treatment of Cancer (EORTC) criteria for radiation
therapy toxicity.14,15

Statistical Analysis
The primary end point was PFS, and the secondary end point was overall survival, measured from the
date of surgery to progression or death, respectively, or censored at the last follow-up. On the basis
of the Stupp regimen’s median PFS of 6.9 months and our retrospective study’s median PFS of 15
months,10,13 we assumed a hazard ratio (HR) of 0.5. Referencing previous reports,16,17 we estimated
a median PFS of 10 months for patients with HGG treated with the Stupp regimen. With a 24-month
accrual period, 36-month maximum follow-up, and 5% dropout rate, 152 patients (76 per arm) were
required to achieve 80% power and a 2-sided type I error of 0.05, expecting 66 events for the
primary analysis of PFS.

Qualitative variables were presented as numbers (percentages) and continuous variables as
medians (ranges). Differences between arms were evaluated using the χ2 or Fisher exact test for
qualitative variables and the Mann-Whitney U test for continuous variables. Survival outcomes were
calculated with the Kaplan-Meier method, with differences compared via the log-rank test. Cox
proportional hazards regression was performed to examine the effect of different survival factors.
The proportional hazards assumption was verified; variables meeting the assumption used Cox
proportional hazards regression, whereas for those violating the assumption the HRs were
interpreted as weighted means during the entire follow-up period. Univariate analysis identified
variables with P < .10 for inclusion in the multivariate model. Statistical significance was defined as
2-tailed P < .05. Analyses were performed using SPSS version 29.0 (IBM Corp).
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Figure 2. Target Volume Definition
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Results

Patient Enrollment and Treatment
Among 154 enrolled patients (85 [55.2%] male and 69 [44.8%]; median [range] age, 51.5 [23.0-70.0]
years), 76 patients (51 with glioblastoma and 25 with grade III glioma) were randomized to the
experimental arm and 78 (57 with glioblastoma and 21 with grade III glioma) to the standard arm
(Figure 1). Baseline characteristics and demographics were balanced (Table 1). MGMT (OMIM
156569) methylation and TERT (OMIM 187270), ATRX (OMIM 300032), and BRAF (OMIM 164757)
gene variants were tested in 74 patients. Additionally, 56 patients (28 per arm) with recurrence
underwent second-line treatment.

PFS and OS
With a median follow-up of 22 months (range, 4-76 months), 96 deaths occurred by June 2024. The
median PFS was 15.5 months (95% CI, 11.7-19.3 months) in the experimental arm and 13.5 months
(95% CI, 8.7-18.3 months) in the standard arm (P = .89). The median OS was 27.0 months (95% CI,
13.9-40.1 months) in the experimental arm and 21.0 months (95% CI, 18.0-24.0 months) in the
standard arm (P = .24) (Figure 3).

Univariate analysis identified age, MGMT promoter methylation status, IDH (OMIM 147700)
variant status, adjuvant chemotherapy cycles, and pathological grade as factors associated with PFS
and OS. Multivariate analysis confirmed age, IDH variant status, and adjuvant chemotherapy cycle as
factors associated with PFS and pathological grade, IDH variant status, and adjuvant chemotherapy
cycles as factors associated with OS (eTable 1 in Supplement 2).

Target Volume Comparison
The median (range) GTV volume was similar between the experimental arm (46.8 [1.2–224.8] cm3)
and standard arm (49.4 [3.8-275.7] cm3) (P = .62). However, CTV1 (median [range], 116.7 [20.2–
370.7] cm3) and CTV2 (median [range], 174.4 [34.5-463.2] cm3) in the experimental arm were
significantly smaller than the CTV (median [range], 225.0 [70.2–542.1] cm3) in the standard arm
(P < .001). When the CTV of patients in the experimental arm was delineated with the standard arm
delineation approaches, CTV2 was also significantly smaller than the CTV (median [range], 239.4
[98.2-505.6] cm3; P < .001).

Recurrence Patterns
Disease progression occurred in 114 patients (59 [77.6%] in the experimental arm and 55 [70.5%] in the
standard arm). Imaging-confirmed recurrence was observed in 79 patients (38 experimental and 41
standard). In the experimental arm, 24 recurrences (63.2%) were within CTV2 compared with 21
(51.2%) within CTV in the standard arm. Recurrences outside the target volume occurred in 8 (21.1%)
and 15 (36.6%) patients in the experimental and standard arms, respectively (P = .18). Multicentric re-
currences were observed in 13 (34.2%) and 7 (17.1%) paitnets in the experimental and standard arms,
respectively (P = .16). According to the RANO criteria, 14 and 12 patients in the experimental and stan-
dard arms, respectively, were classified as unknown without confirmation by MRI or further surgery.

The distant recurrence rates were 4.4% (1 of 23 patients) and 31.8% (7 of 22 patients) in patients
with and without MGMT promoter methylation in the experimental arm, respectively, compared with
25.0% (4 of 16 patients) and 23.1% (3 of 13 patients) in the standard arm, respectively. For IDH status,
distant occurrence was observed in 2 of 51 patients (3.9%) with IDH wild-type variants and 10 of 20
patients (50.0%) with IDH variants in the experimental arm compared with 9 of 49 (18.4%) and 7 of
26 (26.9%) in the standard arm, respectively (eTable 2 in Supplement 2).

Adverse Events
During concurrent and adjuvant chemotherapy, the most prevalent acute adverse reactions were
dizziness, headache, nausea, vomiting, loss of appetite, and hematologic toxicicity (mostly grades
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1 and 2). Anemia, neutropenia, and thrombocytopenia were observed in 43 (56.6%), 19 (25.0%), and
15 (19.7%) of the 76 patients in the experimental arm and 46 (59.0%), 13 (16.7%), and 14 (17.9%) of
the 78 patients in the standard arm, respectively. Grade 3 to 4 adverse events were reported in

Table 1. Demographic and Baseline Clinical Characteristics of the Study Patients

Characteristic

Patients, No. (%)

Experimental arm (n = 76) Standard arm (n = 78)

Sex

Male 43 (56.6) 42 (53.8)

Female 33 (43.4) 36 (46.2)

Age, y

Median (range) 53 (25-69) 51 (23-70)

<55 40 (52.6) 46 (59.0)

≥55 36 (47.4) 32 (41.0)

WHO grade

III 25 (32.9) 21 (26.9)

IV 51 (67.1) 57 (73.1)

Extent of surgery

Complete resection 69 (90.8) 64 (82.1)

Partial resection 6 (7.9) 12 (15.4)

Biopsy 1 (1.3) 2 (2.6)

Time to beginning radiotherapy, d

Median (range) 38.5 (23-69) 38.5 (16-127)

≤42 51 (67.1) 52 (66.7)

>42 25 (32.9) 26 (33.3)

Adjuvant temozolomide cycles

Median (range) 6 (0-20) 6 (0-35)

<6 24 (31.6) 31 (39.7)

6 29 (38.2) 19 (24.4)

>6 23 (30.2) 28 (35.9)

MGMT status

Methylated 23 (30.3) 16 (20.5)

Unmethylated 22 (28.9) 13 (16.7)

Unknown 31 (40.8) 49 (62.8)

IDH

Variant 20 (26.3) 26 (33.3)

Wild type 51 (67.1) 49 (62.8)

Unknown 5 (6.6) 3 (3.8)

1p19q

Codeleted 8 (10.5) 5 (6.4)

Noncodeleted 37 (48.7) 24 (30.8)

Unknown 31 (40.8) 49 (62.8)

TERT C228T

Variant 22 (28.9) 16 (20.5)

Wild type 23 (30.3) 13 (16.7)

Unknown 31 (40.8) 49 (62.8)

TERT C250T

Variant 10 (13.2) 6 (7.7)

Wild type 31 (40.8) 22 (28.2)

Unknown 35 (46.1) 50 (64.1)

BRAF-V600E

Variant 0 0

Wild type 42 (55.3) 28 (35.9)

Unknown 34 (44.7) 50 (64.1)
Abbreviation: WHO, World Health Organization.

JAMA Network Open | Oncology Modified Target Delineation and Radiotherapy for High-Grade Glioma

JAMA Network Open. 2025;8(7):e2523053. doi:10.1001/jamanetworkopen.2025.23053 (Reprinted) July 24, 2025 7/14

Downloaded from jamanetwork.com by guest on 08/14/2025



Fi
gu

re
3.

Pr
og

re
ss

io
n-

Fr
ee

Su
rv

iv
al

an
d

O
ve

ra
ll

Su
rv

iv
al

10
0 80 60 40 20 0

Progression-free survival, %

Ti
m

e,
 m

o

Pr
og

re
ss

io
n-

fr
ee

 su
rv

iv
al

A

60
0

12
24

36
48

72
84

St
an

da
rd

 a
rm

Ex
pe

rim
en

ta
l a

rm

N
o.

 a
t r

is
k

Ex
pe

rim
en

ta
l a

rm
St

an
da

rd
 a

rm
76 78

51 41
25 26

13 14
10 8

5 3
1 0

0 0

H
R,

 2
.0

3 
(9

5%
 C

I, 
1.

00
-4

.1
2)

10
0 80 60 40 20 0

Overall survival, %

Ti
m

e,
 m

o

O
ve

ra
ll 

su
rv

iv
al

B

60
0

12
24

36
48

72
84

St
an

da
rd

 a
rm

Ex
pe

rim
en

ta
l a

rm

N
o.

 a
t r

is
k

Ex
pe

rim
en

ta
l a

rm
St

an
da

rd
 a

rm
76 78

64 67
34 32

19 20
16 10

9 5
2 0

0 0

H
R,

 1
.0

0 
(9

5%
 C

I, 
0.

96
-1

.0
5)

H
R

in
di

ca
te

sh
az

ar
d

ra
tio

.

JAMA Network Open | Oncology Modified Target Delineation and Radiotherapy for High-Grade Glioma

JAMA Network Open. 2025;8(7):e2523053. doi:10.1001/jamanetworkopen.2025.23053 (Reprinted) July 24, 2025 8/14

Downloaded from jamanetwork.com by guest on 08/14/2025



4 (5.3%) and 3 (3.8%) patients in the experimental and standard arm, respectively, without statistical
significance (P = .72) (Table 2).

All patients underwent a Mini-Mental State Examination (MMSE) 1 week before radiotherapy,
with median score of 28 points in both the experimental arm (range, 24-30) and standard arm
(range, 23-30). One week after completing adjuvant chemotherapy, 103 patients were reassessed.
The median MMSE scores were 28 points for the experimental arm and 27 points for the standard
arm, respectively.

Discussion

The Stupp regimen,13 combining radiotherapy with concurrent and adjuvant temozolomide
chemotherapy, remains the standard treatment for newly diagnosed glioblastoma. However,
outcomes for glioblastoma with multidisciplinary treatment remain suboptimal.18-20 Advanced
radiotherapy techniques enable precise dose delivery while sparing organs at risk, yet late
neurocognitive dysfunction resulted from normal brain tissue irradiation persists as a concern.21

Optimal total radiotherapy dose, fractionation, and target volume for HGG radiotherapy require
further investigation to improve efficacy and minimize toxicity. Unlike prior studies,1,2,9 this trial
escalated total and fractionated doses while reducing target volume in patients with HGG.

Ongoing research investigates whether higher total or fractionated radiation dose improve
survival in patients with HGG.22,23 A prior retrospective analysis10 suggested that HSIB-IMRT
improved outcomes in glioblastoma compared with other literature. However, this trial found that
HSIB-IMRT did not significantly prolong the median PFS and median OS and did not reduce the
recurrence within target volume in patients with HGG compared with standard IMRT. These results
suggest that increasing the total or fractionated doses does not improve tumor control in HGG.

Table 2. Adverse Events in Patients in the Experimental and Standard Arms

Adverse event

Patients, No. (%)

P valueExperimental arm (n = 76) Standard arm (n = 78)

Neutropenia

Grades 1-2 18 (23.7) 12 (15.4)
.43

Grades 3-4 1 (1.3) 1 (1.3)

Anemia

Grades 1-2 42 (55.3) 44 (56.4)
.83

Grades 3-4 1 (1.3) 2 (2.6)

Thrombocytopenia

Grades 1-2 13 (17.1) 14 (17.9)
.35

Grades 3-4 2 (2.6) 0

Fatigue

Grades 1-2 2 (2.6) 1 (1.3)
.55

Grades 3-4 0 0

Nausea

Grades 1-2 28 (36.8) 33 (42.3)
.49

Grades 3-4 0 0

Vomiting

Grades 1-2 5 (5.3) 9 (11.5)
.28

Grades 3-4 0 0

Headache

Grades 1-2 9 (11.8) 13 (16.7)
.39

Grades 3-4 0 0

Hypersomnia

Grades 1-2 0 1 (1.3)
.33

Grades 3-4 0 0
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Recently, Laprie et al24 reported that dose-escalated radiotherapy (72 Gy) targeting magnetic
resonance spectroscopy imaging–defined metabolic abnormalities did not improve OS in newly
diagnosed glioblastoma. Other studies25-27 have also shown that higher radiation dosages do not
extend OS or improve tumor control in newly diagnosed HGG. Combining radiotherapy with other
treatment strategies, such as targeted drugs or radiosensitizers, may be a better option to improve
antitumor efficacy in HGG. For example, adjuvant temozolomide with interferon alfa treatment
prolongs the survival time of patients with HGG.28

In this trial, HSIB-IMRT was safe for patients with HGG, with no significant differences in toxic ef-
fects between arms. The most common adverse events were hematologic toxic effects and gastrointes-
tinal effects associated with chemotherapy and radiotherapy, consistent with previous reports.13,29,30

There is no consensus on optimal irradiation target volumes for HGG across radiotherapy centers.
The RTOG-9503 and EORTC-26981 trials suggested a 2- to 3-cm margin around GTV, with or without
inclusion of cytotoxic edema assessed by T2-weighted and FLAIR sequences.2,11 These suggestions do
not account for the anisotropic infiltration patterns of glioma cells, resulting in larger irradiation vol-
umes. Accurate target definition is vitally crucial for reducing normal brain tissue irradiation and pre-
serving neurologic function. A panel of radiation oncologists specializing in central nervous system dis-
eases emphasized the need for further research to reduce target volume based on glioblastoma’s infil-
trative nature.3 Irradiation of normal brain tissue near the GTV is still worthy of further investigation.

Previous studies31,32 have confirmed glioma cell infiltration in edematous brain tissue. Abnormal
edema caused by subdiagnostic tumor infiltration serves as an early indicator of glioma progression
as incorporated in the RANO criteria.2,8,33 Multimodal MRI, including T2-weighted and FLAIR
sequences, diffusion-weighted imaging, apparent diffusion coefficient and 3-dimensions MRS,
combined with the white matter tract atlas, provides accurate information on glioma infiltration
pathway.33-37 In this study, CTV1 and CTV2 delineation, guided by these multimodal MRI data and
white matter tracts, reduced irradiation volume by approximately 22.5% in the experimental arm.
This reduction did not compromise radiotherapy efficacy or alter recurrence patterns compared with
the standard arm. Given that radiation-induced neurotoxicity correlates with the radiation dose
exposed to normal brain tissue,38 the modified target volume significantly reduced the radiation
dose to adjacent brain gyri near the GTV, likely enhancing neuroprotection.

Notably, the experimental arm showed a lower incidence of distant recurrence in patients with
HGG with MGMT promoter methylation compared with the standard arm. Previous studies39-41 have
reported that MGMT promoter methylation is associated with higher rates of distant glioma
recurrence. Brandes et al39 and Minniti et al40 reported that MGMT-methylated gliomas had
increased distant relapses compared with unmethylated cases. Our findings indicated that HSIB-
IMRT may reduce distant relapse in patients with MGMT-methylated HGG. This finding aligns with
the results of the study by Laack et al,41 which suggests that dose escalation may particularly benefit
patients with MGMT-methylated HGG. Precise local intensification strategies may effectively
mitigate this localized failure in this subgroup.

Limitations
This study has limitations. The sample size calculation assumed an HR of 0.5 based on promising
outcomes from previous retrospective studies,10,16,17 potentially overestimating the treatment
effect. In addition, the observed HR of 0.87 suggests the trial was underpowered to detect smaller
but clinically meaningful differences, necessitating future trials to consider more conservative effect
size estimates or adaptive designs for such uncertainties. Suboptimal treatment adherence, with
few patients with recurrent disease receiving second-line therapy and one-third completing fewer
than 6 chemotherapy cycles, could compromise HGG survival, whereas simultaneous alteration of
both radiation dose and target volume may obscure individual parameter contributions to outcomes,
complicating benefit-risk assessments. Furthermore, the MMSE’s limited sensitivity in detecting
subtle neurocognitive impairments as a simplistic tool may obscure potential benefits of reduced
radiation target volumes.
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Conclusions

This randomized clinical trial demonstrated that HSIB-IMRT had similar PFS and OS to conventional
IMRT in patients with newly diagnosed HGG. The modified CTV delineation reduced the target
volumes without compromising efficacy or altering recurrence patterns. This study provides valuable
insights for future research aimed at personalized, reduced volume strategies to optimize outcomes
and minimize neurotoxicity in HGG.
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