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Homologs Inhibitory Protein (EZHIP) and EGFR-altered 
[2]. Unfortunately, due to their deep midline locations, 
gross-total resection is often impossible for DMGs [3, 4]. 
Radiotherapy remains a standard treatment to improve the 
prognosis of DMG [3, 4]. However, the prognosis of these 
tumors remains poor with a dismal median overall survival 
(OS) of 10.0–14.0 months, due to its aggressive clinical 
behavior and limited treatment methods [5–7].

Leptomeningeal dissemination (LMD) results from the 
spread of tumor cells from brain parenchyma to leptomen-
inges and cerebrospinal fluid (CSF) [8]. It represents a chal-
lenging, often terminal complication in gliomas, with a 
median OS of 2–5 months after LMD diagnosis [8]. There is 
no standardized treatment method for LMD patients. Radio-
therapy combined with chemotherapy, Chemotherapy, and 
intrathecal methotrexate (MTX) treatment are potential 
therapeutic options in LMD patients [9–11]. LMD can also 
develop hydrocephalus due to impaired CSF resorption and 

Introduction

Diffuse midline glioma (DMG), H3 K27M-mutant, is one 
of the most malignant diffuse brain tumors in the central 
nervous system (CNS). It was first classified as a separate 
tumor entity in the 2016 WHO classification of tumors of 
the CNS, characterized by diffuse infiltrative brain tumors 
in the midline location harboring H3K27M mutation [1]. 
With the deepening of understanding, this entity was rede-
fined in the 2021 WHO classification as “diffuse midline 
glioma, H3 K27-altered,” now encompassing cases with 
H3F3A wild-type and overexpression of Enhancer of Zest 
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Abstract
Purpose  This study aimed to describe the incidence, clinical and pathological features, and outcomes of H3 K27M- mutant 
Diffuse Midline Glioma (DMG) patients with leptomeningeal dissemination (LMD) and systematically investigate the pre-
dictive and prognostic factors to clarify the response to treatment after the onset of LMD.
Methods  A total of 304 patients diagnosed with DMG from October 17, 2017, to October 17, 2023, were enrolled in this 
study, of which 32 patients were diagnosed with LMD. Logistic regression analyses were conducted to identify the predictors 
of LMD, including clinical, molecular, and imaging data. Univariable and multivariable cox regression analyses were used 
for overall survival (OS) and post-LMD survival (PLS) analysis.
Results  The median OS and PLS were 12.5 and 8.0 months respectively. Tumor with contrast-enhanced lesions reaching 
ependyma (Ventricular contact type I) was the only independent risk factor for LMD. Male sex and ventricular contact type 
I were independent risk factors for primary LMD. In all LMD patients, Karnofsky Performance Status (KPS) of ≥ 90 and 
radiotherapy were statistically significantly associated with longer OS, and primary LMD was significantly associated with 
shorter OS. Supratentorial location and chemotherapy after LMD diagnosis were independent favorable prognostic factors 
on PLS. In primary LMD subgroup analysis, radiotherapy was the only independent favorable prognostic factor on OS.
Conclusions  The association between contrast-enhanced lesions and ventricular involvement is an independent predictive 
factor for LMD in DMG patients. Radiotherapy and preoperative KPS may contribute to improved overall survival in these 
patients. Chemotherapy is a potential treatment option following an LMD diagnosis.
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ventriculoperitoneal (VP) shunt has been shown to improve 
survival and symptoms [12]. Previous studies have reported 
that some molecular factors such as IDH-wildtype, MGMT 
promoter unmethylation, H3 K27 alteration, or tumor con-
tact with the subventricular zone (SVZ) might be associated 
with leptomeningeal dissemination [13, 14].

However, previous studies predominantly focused on 
high-grade gliomas, particularly glioblastoma. LMD in 
H3K27M-mutant DMG was rarely reported. Research 
indicates that approximately one-third of diffuse intrin-
sic pontine glioma (DIPG) patients experience LMD [15]. 
Meanwhile, LMD in DMG patients has a variable incidence 
ranging from 4.1 to 42.0% [4, 16–18]. LMD is a negative 
prognostic indicator in DMG, with a worse median OS 
of 11.4 months, compared to 18.5 months for those with-
out LMD [16]. However, a comprehensive analysis of 
H3K27M-mutated DMG patients with LMD is lacking.

Therefore, we retrospectively collected data from 32 
H3 K27M-mutated DMG patients with LMD, making this 
the largest systemic study on the topic to date. The present 
study aimed to describe the incidence, clinicopathological 
features, and outcomes of DMG patients with LMD and 
systematically investigate predictive and prognostic factors 
of LMD in DMG to enhance the awareness of this rare sub-
set of tumors.

Materials and methods

Patients cohort

We retrospectively collected data of patients with DMG at 
Sanbo Brain Hospital, Capital Medical University, from 

October 17, 2017, to October 17, 2023. The inclusion cri-
teria were DMG confirmed by histopathology harboring H3 
K27M mutation. The exclusion criteria were spinal cord 
DMG, incomplete preoperative magnetic resonance imag-
ing data, and loss to follow-up. All diagnoses were con-
firmed by experienced neuropathologists according to the 
2021 WHO classification when necessary. A total of 304 
patients were included in this study for logistic regression 
analysis and 31 patients for Cox analysis. Among the 31 
LMD patients, 17 were classified into the primary LMD 
subgroup, defined as those with LMD at the initial DMG 
diagnosis, while 14 patients were assigned to the second-
ary LMD subgroup, which includes those who developed 
LMD later in the course of their disease. Figure 1 shows the 
flow chart for patient inclusion and exclusion. The Medical 
Ethics Committee of Capital Medical University approved 
this study.

Imaging data

Patients were routinely followed up with brain MR scans 
at an interval of three months, or one month if there was 
evidence suggesting LMD. Spinal cord MRI scans were not 
part of routine follow-up but were performed when LMD 
was suspected. The LMD was defined as linear or nodu-
lar contrast enhancement of the subarachnoid spaces or the 
cerebral subependymal zone, described in detail in a previ-
ous study [19]. The evaluation criteria of the extent of tumor 
resection based on postoperative imaging were as follows: 
gross total resection (GTR) was defined as the removal of 
more than 98% of the tumor mass; non-GTR, referring to 
the removal of less than 98%, included subtotal resection 
and partial resection of craniotomy and biopsy. We initially 

Fig. 1  Patient selection flow chart
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aimed to evaluate the relationship between SVZ and LMD. 
Previous studies suggested that SVZ is confined to the lin-
ing of the lateral ventricle [20, 21], which complicates the 
effective assessment of the relationship between SVZ and 
LMD in infratentorial DMGs. Therefore, we propose a new 
classification system based on the anatomical relationships 
between contrast-enhanced lesions (CEL) or non-CEL and 
the ventricle as follows: Type I: CEL contacting the epen-
dyma (Supplementary Fig. 1a); Type II: Non-CEL contact-
ing the ependyma (Supplementary Fig. 1b and 1c); Type III: 
Both CEL and non-CEL not contacting ependyma (Supple-
mentary Fig. 1d). The MRI type of LMD was classified as 
our previous study [9]: Type Ia: CEL contacted subependy-
mal zone (Supplementary Fig. 2a); Type Ib: enhancement 
in subarachnoid space (Supplementary Fig.  2b); Type II: 
enhancement in both subarachnoid space and subependymal 
zone (Supplementary Fig. 2c and 2d). Two well-experienced 
radiologists independently confirmed LMD on imaging.

Statistical analysis

Categorical data are presented as counts (frequencies), and 
continuous variables are expressed as medians (ranges). 
The Chi-square test tested differences between groups for 
categorical variables and the Mann–Whitney U test for con-
tinuous variables. Logistic regression analyses were con-
ducted on all patients with variables showing p-values less 
than 0.05 included in the multivariate analyses to identify 
the predictors of LMD. OS was defined as the time from 
glioma diagnosis to the time of death or last follow-up. Post-
LMD survival (PLS) was defined as the time from LMD 
diagnosis to death. Univariable Cox regression analysis 
was performed for the entire LMD patients and a primary 
LMD subgroup. Variables that reached a significance level 
of p < 0.05 in univariable analyses were included in a multi-
variate Cox model. Survival analyses were illustrated using 
Kaplan–Meier curves, with differences between curves 
compared using the log-rank test. OS data were censored 
during the last follow-up if the patient was still living. Sta-
tistical Package for the Social Sciences version 25.0 (IBM 
Corporation, Armonk, NY, USA) was used for statistical 
analysis. Probability values were obtained using two-sided 
tests with statistical significance defined as p-values less 
than 0.05.

Results

Patient characteristics

A total of 32 patients out of the 304 H3 K27M-mutated 
DMG patients were identified to have developed LMD, 

resulting in an incidence rate of 10.5%. The cohort included 
175(57.6%) males and 129 (42.4%) females with a median 
age of 24.0 years, ranging from 2 to 71. The clinical, radio-
logical, and molecular data of our cohort and the patients 
with and without LMD are summarized in Supplementary 
Table 1. No significant differences were observed in gen-
der or age distribution between the two groups. Tumors in 
supratentorial locations were more common in the LMD 
group compared to those without LMD (71.9% vs. 50.0%, 
p = 0.019). There was a significant difference in the extent 
of resection between the groups (p = 0.001). Patients with 
LMD have a higher incidence of VE than those without 
LMD (68.8% vs. 39.0%, p = 0.001). Additionally, patients 
with LMD were more likely to develop hydrocephalus than 
those without LMD (62.5% vs. 34.2%, p = 0.002). A sig-
nificant difference was also noted in the percentage of ven-
tricular contact type (p = 0.000). A total of 113 patients were 
diagnosed with hydrocephalus, and 41 of them underwent 
ventriculoperitoneal shunt surgery.

The clinical, radiological, and pathological character-
istics of LMD patients are illustrated in Table  1. And the 
detailed treatments of 31 patients with LMD are illustrated 
in Supplementary Table 2. The cohort comprised 21(67.7%) 
males and 10 (25.8%) females with a median age of 20.0 
years (range: 6–53 years). The baseline characteristics of 
the primary and secondary LMD groups were similar. No 
significant differences were observed between the groups 
regarding age, gender, tumor location, Karnofsky Perfor-
mance Status (KPS), presence of hydrocephalus, extent of 
resection, or ventricular contact. Patients with secondary 
LMD have a higher incidence of receiving radiotherapy 
compared to those with primary LMD (100.0% vs. 70.6%, 
p = 0.048). Patients with primary LMD had a worse median 
OS than those with secondary LMD (8.0 vs. 13.5 months, 
p = 0.002, log-rank test). The PLS showed no difference 
between the two groups.

Risk factors of LMD

Univariable analysis identified supratentorial location (OR: 
2.556, 95% CI: 1.141–5.724, p = 0.023), hydrocephalus 
(OR: 3.208, 95% CI: 1.503–6.847, p = 0.003), ventricular 
contact type I (OR: 5.952, 95% CI: 2.485–14.255, p = 0.000) 
as risk factors for LMD. Multivariate analysis showed that 
Ventricular contact type I (OR: 3.912, 95% CI: 1.363–
11.222, p = 0.011) was the only independent risk factor for 
LMD (Table 2).

Prognostic factors of OS in all LMD patients

Out of 32 patients with LMD, 30 were recorded as deceased, 
and 1 was lost to follow-up. Consequently, 31 patients were 
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95% CI: 0.030–0.597, p = 0.008) and primary LMD (HR: 
4.349, 95% CI: 1.628–11.618, p = 0.003) as independent 
prognostic factors on OS (Table  3). The median OS was 
significantly longer in patients with KPS of ≥ 90 and radio-
therapy compared to those with KPS<90, non-radiother-
apy (15.0 vs. 8.0 months, p = 0.001; 13.0 vs. 4.0 months, 
p = 0.000, respectively; log-rank test; Fig. 2). Additionally, 
patients with primary LMD had a shorter median OS com-
pared to those with secondary LMD (8.0 vs. 13.5 months, 
p = 0.002, log-rank test; Fig. 2).

included in the Cox regression analysis. The median OS was 
12.5 months. Univariate analysis revealed that KPS of ≥ 90 
(HR: 0.258, 95% CI: 0.103–0.645, p = 0.004), GTR (HR: 
0.409, 95% CI: 0.169–0.990, p = 0.047), radiotherapy (HR: 
0.051, 95% CI: 0.012–0.226, p = 0.000), chemotherapy 
(HR: 0.142, 95% CI: 0.048–0.419, p = 0.000) were associ-
ated with longer OS. Primary LMD (HR: 3.416, 95% CI: 
1.483–7.871, p = 0.004) was associated with shorter OS. 
Multivariable analysis identified KPS of ≥ 90 (HR: 0.187, 
95% CI: 0.063–0.549, p = 0.002), radiotherapy (HR: 0.134, 

Table 1  Clinical, radiological and pathological characteristics of LMD patients
Variable Total

(n = 31)(%)
Primary LMD
(n = 17)(%)

Secondary LMD
(n = 14)(%)

P-value

Age at DMG diagnosis 20.0(6–53) 23.0(7–53) 12.5(6–39) 0.357
Age at LMD diagnosis 21.0(7–53) 23.0(7–53) 13.5(7–44) 0.297
Gender 0.121
male 21(67.7) 14(82.4) 7(50.0)
female 10(25.8) 3(17.6) 7(50.0)
Tumor locationa 0.233
Supratentorial 22(71.0) 14(82.4) 8(57.1)
Infratentorial 9(29.0) 3(17.6) 6(42.9)
KPS ≥ 90a 19(61.3) 10(58.8) 9(64.3) 1.000
KPS ≥ 90 at LMD diagnosis 14(45.2) 10(58.8) 4(28.5) 0.149
Hydrocephalusa 19(61.3) 10(58.8) 9(64.3) 1.000
Ventricular contacta 0.044
Type I 24 (77.4) 16(94.1) 8(57.1)
Type II 5(16.1) 1(5.9) 4(28.5)
Type III 2(6.5) 0(0) 2(14.3)
Extent of resectiona 0.933
Biopsy 7(22.6) 4(23.5) 3(21.4)
Subtotal 14(45.2) 8(47.1) 6(42.9)
Gross total resection 10(32.3) 5(29.4) 5(35.7)
Treatment after DMG diagnosis
Chemotherapy 25(80.6) 12(70.6) 13(92.9) 0.185
Radiotherapy 26(83.9) 12(70.6) 14(100.0) 0.048
Antiangiogenic therapy 11(35.5) 4(23.5) 7(50.0) 0.153
Clinical trials 4(12.9) 2(11.8) 2(14.3) 1.000
MRI of LMD 0.699
Type Ia 8(25.8) 4(23.5) 4(28.6)
Type Ib 9(29.0) 6(35.3) 3(21.4)
Type II 14(45.2) 7(41.2) 7(50.0)
Treatment after LMD diagnosis
Chemotherapy 19(64.5) 12(70.6) 7(50.0) 0.288
Radiotherapy 12(38.7) 12(70.6) 0(0) 0.000
Antiangiogenic therapy 10(32.3) 4(23.5) 6(42.9) 0.441
Clinical trials 4(12.9) 2(11.8) 2 (14.3) 1.000
OS, Median (Min-Max), y 12.5(2–60) 8.0(2–19) 13.5(5–60) 0.002
PLS, Median (Min-Max), y 8(1–19) 8.0(2–19) 6(1–14) 0.191
ATRX loss 8(25.8) 5(29.4) 3(21.4) 0.698
MGMT promoter methylation 1/17b(5.9) 1/8(12.5) 0/9(0) 1.000
LMD leptomeningeal dissemination, KPS Karnofsky Performance Scale, OS overall survival, PLS post-LMD survival, DMG diffuse midline 
glioma, ATRX alpha-thalassemia/mental retardation syndrome X-linked, MGMT O6-methylguanine-methyltransferase
a at glioma diagnosis
b The MGMT methylation status was available in 17 patients
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infratentorial location and non-chemotherapy (9.0 vs. 2.5 
months, p = 0.001; 9.0 vs. 2.5 months, p = 0.001, respec-
tively; log-rank test; Fig. 2).

Risk factors of primary LMD

In univariable analysis, male sex (OR: 3.937, 95% CI: 
1.115–13.901, p = 0.033), supratentorial location (OR: 
4.931, 95% CI: 1.397–17.401, p = 0.013), hydrocephalus 
(OR: 2.835, 95% CI: 1.066–7.538, p = 0.037), ventricu-
lar contact type I (OR: 27.200, 95% CI: 3.569–207.270, 
p = 0.001) are risk factors for LMD. In multivariable analy-
sis, male sex (OR: 4.169, 95% CI: 1.143–15.210, p = 0.031) 
and ventricular contact type I (OR: 23.309, 95% CI: 2.759-
196.925, p = 0.004) were independent risk factors (Supple-
mentary Table 3).

Prognostic factors of PLS in all LMD patients

The median PLS was 8.0 months. Univariate analysis 
demonstrated supratentorial location (HR: 0.244, 95% CI: 
0.096–0.621, p = 0.003), KPS of ≥ 90 at LMD diagnosis 
(HR: 0.355, 95% CI: 0.156–0.804, p = 0.013), radiotherapy 
after LMD diagnosis (HR: 0.363, 95% CI: 0.156–0.846, 
p = 0.019), chemotherapy after LMD diagnosis (HR: 0.277, 
95% CI: 0.122–0.628, p = 0.002) were associated with lon-
ger PLS. Multivariable analysis revealed supratentorial 
location (HR: 0.312, 95% CI: 0.120–0.812, p = 0.017) and 
chemotherapy after LMD diagnosis (HR: 0.333, 95% CI: 
0.143–0.776, p = 0.011) were independent prognostic fac-
tors on PLS (Table 4). The median PLS was significantly 
longer in patients with supratentorial location and che-
motherapy after LMD diagnosis compared to those with 

Table 2  Predictors of LMD by univariable and multivariable logistic regression analyses
Variable Univariate Multivariate

OR 95% CI P-value OR 95% CI P-value
Age (≥ 18) 0.962 0.456–2.030 0.920
Gender (Male) 1.711 0.781–3.751 0.180
Supratentorial location 2.556 1.141–5.724 0.023
Hydrocephalus 3.208 1.503–6.847 0.003
Ventricular contact
Type I 5.952 2.485–14.255 0.000 3.912 1.363–11.222 0.011
Type II 0.407 0.152–1.094 0.075
Type III 0.147 0.034–0.628 0.010
Ki-67>20% 2.215 0.880–5.572 0.091
ATRX loss 1.274 0.522–3.113 0.595
MGMT promoter methylation 0.484 0.059–3.987 0.500
ATRX alpha-thalassemia/mental retardation syndrome X-linked, MGMT O6-methylguanine-methyltransferase

Table 3  Overall survival of all LMD patients by univariable and multivariable Cox analyses
Variable Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value
Age (≥ 18) 0.696 0.318–1.523 0.364
Gender (Male) 1.101 0.494–2.452 0.815
Supratentorial location 0.488 0.204–1.169 0.107
KPS ≥ 90 0.258 0.103–0.645 0.004 0.187 0.063–0.549 0.002
Hydrocephalus 1.058 0.486–2.303 0.887
Ventricular contact
Type I 0.760 0.314–1.842 0.544
Type II 1.413 0.528–3.780 0.492
Type III 1.019 0.236–4.395 0.980
Gross total resection 0.409 0.169–0.990 0.047
Chemotherapy 0.142 0.048–0.419 0.000
Radiotherapy 0.051 0.012–0.226 0.000 0.134 0.030–0.597 0.008
Antiangiogenic therapy 0.854 0.400-1.822 0.638
Clinical trials 1.044 0.359–3.036 0.937
Primary LMD 3.416 1.483–7.871 0.004 4.349 1.628–11.618 0.003
ATRX loss 1.917 0.803–4.573 0.143
MGMT promoter methylation 3.531 0.394–31.630 0.259
KPS Karnofsky Performance Scale, LMD leptomeningeal dissemination, ATRX alpha-thalassemia/mental retardation syndrome X-linked, 
MGMT O6-methylguanine-methyltransferase
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Table 4  Post-LMD survival by univariable and multivariable Cox analyses in all LMD patients
Variable Univariate Multivariate

HR 95% CI P-value HR 95% CI P-value
Age (≥ 18)a 0.525 0.248–1.111 0.092
Gender (Male) 0.676 0.299–1.527 0.346
Supratentorial location 0.244 0.096–0.621 0.003 0.312 0.120–0.812 0.017
KPS ≥ 90a 0.355 0.156–0.804 0.013
MRI of LMD
Type Ia 0.874 0.378–2.018 0.752
Type Ib 1.191 0.535–2.651 0.669
Type II 0.960 0.439–2.099 0.919
Gross total resectiona 0.703 0.265–1.865 0.480
Chemotherapya 0.277 0.122–0.628 0.002 0.333 0.143–0.776 0.011
Radiotherapya 0.363 0.156–0.846 0.019
Antiangiogenic therapya 0.998 0.451–2.207 0.996
Clinical trialsa 1.593 0.543–4.674 0.396
Primary LMD 0.619 0.286–1.339 0.223
ATRX loss 1.516 0.633–3.635 0.351
MGMT promoter methylation 1.101 0.140–8.658 0.927
KPS Karnofsky Performance Scale, LMD leptomeningeal dissemination, ATRX alpha-thalassemia/mental retardation syndrome X-linked, 
MGMT O6-methylguanine-methyltransferase
a after LMD diagnosis

Fig. 2  Comparison of OS and PLS by Kaplan–Meier curves. (a) 
Patients who received radiotherapy have longer OS. (b) Patients with 
KPS of ≥ 90 have longer median OS. (c) Primary LMD was associated 
with a poorer prognosis. (d) Patients undergoing chemotherapy after 

LMD diagnosis have longer PLS. (e) Patients with tumors located in 
the supratentorial region have longer PLS. (f) In the primary LMD 
subgroup, patients undergoing radiotherapy have a better prognosis
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in glioblastoma progression [24]. Generally, females exhibit 
stronger immune responses than males, and the differences 
are attributed to sex hormones and/or sex chromosomes 
[24]. Thus, we hypothesize that certain immunologic mech-
anisms underlying sex differences may help explain the 
higher male risk for primary LMD.

Our results indicated that the baseline characteristics 
of primary and secondary LMD were similar. However, 
the median OS of patients with primary LMD was shorter 
than that of those with secondary LMD, consistent with 
our previous findings in high‑grade gliomas [9]. It could be 
speculated that the earlier the onset of LMD, the poorer the 
prognosis. Previous studies have reported that higher KPS 
was associated with longer OS in H3 K27M-mutated DMGs 
[3, 25]. Similarly, our study observed that higher KPS in 
DMG patients with LMD also demonstrated this survival 
benefit, potentially due to their improved ability to adhere 
to more effective adjuvant treatments, such as radiation and 
chemotherapy.

Currently, radiation therapy is the standard of care for 
DMG patients, while chemotherapy has been considered 
largely ineffective [6]. Our findings also reveal that radio-
therapy is an independent prognostic factor for OS in both 
the total LMD patients and the primary LMD subgroup. 
However, we do not deny the role of radiotherapy in pro-
longing survival, as 24 patients in this cohort received both 
radiotherapy and chemotherapy. Additionally, we also found 
that chemotherapy after LMD diagnosis is an independent 
risk factor for PLS. This indicates that chemotherapy plays 
a more active role in patients with LMD than radiotherapy. 
Chemotherapy can eliminate the tumor cells in the CSF and 
reduce the incidence of non-local progression [23]. Thus, 
we hypothesize that this may be due to chemotherapy’s sys-
temic effects, which can target the entire central nervous 
system, in contrast to the localized nature of radiotherapy. 
While tumor resection is generally thought to have a limited 
impact on OS [3, 4, 25, 26] Our results demonstrated that 
GTR has the potential to improve OS in LMD patients in 
univariable analysis. However, GTR is not an independent 
prognostic factor, leading us to conclude that it does not 
significantly enhance the prognosis of DMG patients with 
LMD.

Previous studies have demonstrated significant differ-
ences in median OS between pediatric and adult popula-
tions [4, 18]. However, this trend has not been observed 
in DMG patients with LMD. The loss of ATRX had been 
confirmed to be associated with a longer OS [3, 27]. Our 
study identified a trend toward longer OS in DMG patients 
with primary LMD, though it did not reach statistical signif-
icance. Wang et al. reported that DMG patients with brain-
stem tumors had a poorer prognosis compared to those with 
tumors in other anatomical locations [28]. In this study, we 

Prognostic factors of OS in primary LMD patients

Univariate analysis revealed KPS of ≥ 90 (HR: 0.185, 95% 
CI: 0.047–0.734, p = 0.016), radiotherapy (HR: 0.073, 95% 
CI: 0.013–0.395, p = 0.002), chemotherapy (HR: 0.163, 
95% CI: 0.045–0.591, p = 0.006) were associated with lon-
ger OS. Multivariable analysis revealed radiotherapy (HR: 
0.073, 95% CI: 0.013–0.395, p = 0.002) was the only inde-
pendent prognostic factor on OS (Supplementary Table 4). 
The median OS was significantly longer in patients who 
received radiotherapy than those who did not (9.0 vs. 4.0 
months, p = 0.000, log-rank test; Fig. 2).

Discussion

LMD is considered to be a late-stage manifestation of gli-
oma, associated with a particularly poor prognosis [12]. 
However, prior research on LMD has primarily focused on 
DIPG, with limited studies addressing supratentorial DMGs 
[4, 15–18, 22]. The present study analyzed the clinicopatho-
logical characteristics of H3 K27M-mutant DMGs with 
LMD, representing the largest series of cases to date. Our 
study confirmed a high incidence (10.5%) of LMD among 
H3 K27M-mutated DMG patients and identified several 
novel and interesting findings. Notably, we observed that 
LMD is more prevalent in supratentorial DMG patients, 
contrasting with the previously held belief of the high inci-
dence of LMD in DIPG [22]. Additionally, we also found 
a strong correlation between LMD and the occurrence of 
hydrocephalus.

Previous studies have shown that contact with SVZ is 
associated with the development of LMD and decreased 
survival [14, 21]. Our original objective was to investigate 
the relationship between SVZ contact and tumor dissemina-
tion in DMG. However, previous SVZ classification meth-
ods were only applicable to supratentorial tumors [20, 21], 
making them unsuitable for all DMG patients, including 
DIPG. Therefore, we proposed a new classification method 
to assess the relationship between tumors and ventricles in 
DMG. Surprisingly, we found that contrast-enhanced lesions 
(CEL) rupture into the ventricles is an independent risk fac-
tor for LMD, indicating that contrast-enhanced lesions are 
more likely to disseminate once they invade the ventricles. 
Jiang et al. reported that male gender was correlated with 
a higher risk for distant progression and LMD [23]. Simi-
larly, our subgroup analysis revealed that male gender is 
an independent risk factor for primary LMD, suggesting a 
potential sex-related influence on LMD development. Lee 
et al. reported that male mice experienced a worse outcome 
and exhibited accelerated tumor growth than female mice. T 
cells are a critical component driving these sex differences 
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