BMB

Korean Society for Biochenisy and Molecuiar Biology

REVIEW ARTICLE

www.nhature.com/emm

W) Check for updates

The functional imperative in high-grade glioma
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Precision oncology has emerged as a promising strategy for treating high-grade gliomas, yet its clinical impact has been
disappointing, with over 300 clinical trials on targeted therapies failing to yield substantial improvements in patient outcomes.
Current approaches primarily focus on static, marker-driven tumor features, which capture only a small portion of the complex
biology that governs therapeutic responses. Functional precision oncology (FPO) offers a complementary approach, enhancing
treatment selection in a personalized manner by dynamically testing patient-derived tumor cells against a range of available
therapeutic agents. Here this review examines both historical and contemporary treatment strategies for high-grade gliomas and
explores underlying reasons for the limited success of multiple precision oncology initiatives. We demonstrate how the
incorporation of FPO in the armamentarium of glioma therapies may address these challenges and outline its proposed role as well
as the practical considerations in utilizing FPO for clinical decision-making in patients with glioma.
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INTRODUCTION

The success of targeted therapies ushered in the era of precision
oncology, a field focused on identifying and targeting cancer-
specific alterations to guide more effective treatments. Pioneering
therapies such as imatinib and trastuzumab, which revolutionized
the management of chronic myeloid leukemia and HER2-positive
breast cancer, respectively, laid the foundation for targeted
approaches. Since then, the field has expanded substantially,
fueled by large-scale cancer genomic projects aimed at uncover-
ing actionable targets for therapeutic intervention'.

While numerous success stories illustrate the transformative
potential of precision oncology, it is key to realize that these
successes are exceptions rather than the rule. The effectiveness of
targeted therapies often varies markedly depending on the cancer
type and its underlying biological context. Glioblastoma (GBM),
the most aggressive form of high-grade glioma (HGG), was the
first cancer to be molecularly characterized by The Cancer
Genome Atlas (TCGA)?. This landmark effort has since transformed
glioma classification, culminating in the World Health Organiza-
tion (WHO) 2021 classification, which integrates molecular
diagnostics into the taxonomy of central nervous system (CNS)
tumors®. Over the past two decades, more than 300 clinical trials
exploring targeted therapies and 50 trials investigating immu-
notherapy have failed to show significant improvements in patient
outcomes*, Efforts have focused on targeting genetic alterations
implicated in HGG pathogenesis, including EGFR overexpression
(evaluated through receptor tyrosine kinase inhibitors and ADC
against EGFRVIII), PTEN loss (addressed by PI3K pathway inhibitors)
and tumor angiogenesis (targeted by antiangiogenic agents such
as bevacizumab). While a new wave of immuno-oncology studies
is emerging, past immuno-oncology strategies, both as

monotherapies and in combination therapies, have failed to
establish a new standard of care (SOC)°. As a result, HGG continues
to rank among the malignancies with the highest failure rates in
cancer treatment.

Despite extensive molecular characterization, it is increasingly
evident that measurable genomic data represents only a fraction
of the intricate biology driving therapeutic responses in HGG. This
highlights the need to better understand the complexity of HGG,
in particular the dynamic interplay of factors such as cellular state
plasticity, microenvironmental interactions and epigenetic mod-
ifications that collectively shape tumor behavior®. Crucially, an
incomplete understanding of all the factors influencing therapeu-
tic outcomes lends support to the inadequacy of current genomic-
centric precision oncology approaches and clinical trials over the
past two decades’.

More recently, functional precision oncology (FPO) has emerged
as a complementary strategy that bridges the gap between static
genomic data and dynamic tumor behavior by directly testing a
patient’s tumor cells against therapeutic agents. This real-time
assessment of drug efficacy provides a more objective basis for
identifying effective treatments beyond genetic probabilities, and
is especially valuable in cases such as HGG, where mutation-based
approaches have failed to reliably predict clinical outcomes. By
expanding the focus beyond targetable mutations alone, FPO
enhances current precision oncology strategies, offering a more
personalized and comprehensive evaluation of drug responses®. In
practice, FPO workflows begin with the collection of patient-
derived specimens to generate ex vivo models, such as 2D cells,
3D organoids or tissue explants, which are rapidly screened
against a panel of drugs to quantify tumor cell responses using
functional assays that measure viability, growth inhibition or
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Fig. 1 Timeline of FDA-approved modalities in HGG. A timeline illustrating the evolution of FDA-approved cancer therapies for HGG,
categorized by their application in primary or recurrent disease. The modalities are color coded to illustrate their evolution, transitioning from
chemotherapy (blue) to targeted therapies (pink) and device-based treatments (green). Key clinical trials that occurred during the

corresponding periods are also shown.

apoptosis. The findings are subsequently integrated with mole-
cular and clinical data, often through multidisciplinary tumor
boards, to inform individualized treatment recommendations
within clinically relevant timeframes. Studies in hematological
malignancies and solid tumors, including HGG, have demon-
strated the feasibility and predictive power of FPO, with clinical
correlations and successful therapeutic outcomes®™'",

In this review, we provide a comprehensive overview of existing
approaches in managing HGGs, outline three key pillars funda-
mental to precision oncology strategies and explore the unique
biological context of HGG that may have limited the success of
previous trials. Finally, we discuss how FPO offers a promising and
innovative approach to address the shortcomings of genomics-
based approaches, paving the way for more effective and
personalized treatment strategies.

THE CURRENT TREATMENT PARADIGM FOR HGGS: PAST
TRIALS, FUTURE CHALLENGES

Historically, HGG referred to a heterogeneous group of gliomas
defined based on histopathological features supported by
ancillary tissue-based tests (for example, immunohistochemistry),
encompassing grade 3 and 4 tumors. More recently, the WHO
2021 classification advanced the role of molecular diagnostics in
CNS tumor classification, dividing adult HGG into four subtypes:
grade 3 oligodendroglioma (1p/19 co-deleted, IDH-mutant), grade
3 IDH-mutant astrocytoma, grade 4 IDH-mutant astrocytoma and
grade 4 IDH wild-type GBM>. HGG carries a median overall survival
(OS) of 14 months and a median progression-free survival (PFS) of
7 months, with tumor recurrence observed in over 90% of
patients®®. Unfortunately, no established SOC treatment exists at
recurrence, for which patients have a median OS of 6.2 months'®.

Timeline of FDA-approved systemic therapies in HGG

There have been very few FDA-approved therapies for HGG
(Fig. 1). Most approved therapies are traditional cytotoxic
therapies belonging to the DNA alkylating class, including
temozolomide (TMZ), lomustine and carmustine (both intravenous
and wafer implants). Exceptions to this include bevacizumab and
tumor-treating field (TTF) devices. In this review, we focus on
treatment regimens used for high-grade astrocytic gliomas, which
constitute the majority of HGGs in adults.

Maximal safe resection followed by radiotherapy remains the
cornerstone of treatment for HGG, with its role established
through studies dating back to the 1970s'". Before the introduc-
tion of TMZ, systemic therapy was predominantly based on
cytotoxic agents such as lomustine and carmustine. These agents
continue to be widely used for the management of recurrent HGG,
although a universally accepted SOC treatment remains elusive'?.
The efficacy of lomustine was first demonstrated as part of the
regimen comprising of procarbazine, lomustine, and vincristine
(PCV), during which it was combined with procarbazine and
vincristine following radiotherapy in newly diagnosed HGG'>.
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Lomustine received FDA approval in 1976 for the treatment of
primary and recurrent HGG; while its efficacy remains largely
limited to tumors with Og-methylguanine DNA methyltransferase
(MGMT) promoter methylation, it continues to be used in the
recurrent setting regardless of MGMT status'®. Similarly, carmus-
tine demonstrated a survival benefit in two pivotal phase lll trials,
which showed that the addition of carmustine to surgery and
radiotherapy improved survival, with a greater proportion of
patients surviving beyond 18 months. Carmustine was subse-
quently approved by the FDA in 1977 for the treatment of
recurrent HGG'®'6,

The landscape of HGG management shifted notably in 2005,
when Stupp et al. demonstrated superior survival outcomes with
the addition of TMZ to radiotherapy in the first-line treatment of
HGG®. This survival benefit was considered a therapeutic mile-
stone for systemic therapy in HGG management and established
the Stupp protocol as the new SOC. Since then, the evolving
molecular understanding of HGG has led to countless trials
evaluating chemotherapy, targeted therapy and immunotherapy,
but none has succeeded in replacing the Stupp protocol.

Bevacizumab is a monoclonal antibody targeting vascular
endothelial growth factor, inhibiting angiogenesis thereby restrict-
ing tumor vascularization. Several phase Il and Il trials have
explored the inclusion of bevacizumab to chemoradiation with
TMZ in the front-line treatment of HGG, including the phase Il
RTOG 0825 (NCT00884741) and phase Il AVAGlio (NCT00943826).
Despite showing a modest prolongation in PFS, these trials did not
demonstrate a significant improvement in OS'”. In 2006, a phase I
study (NCT00345163) assessed the efficacy of bevacizumab, both
as a monotherapy and in combination with irinotecan, for patients
with recurrent HGG. The promising results from this study led to
FDA approval of bevacizumab in 2009 as salvage therapy for
recurrent HGG'®. Subsequently, several other trials explored the
use of bevacizumab in combination with various chemotherapy
agents'’. While the combination of lomustine and bevacizumab
appeared promising in the phase Il BELOB trial (NCT01290939) and
the phase Ill EORTC 26101 trial (NCT01290939), these trials failed
to meet their primary endpoint of an OS benefit'®. Nonetheless,
bevacizumab and lomustine remain the most commonly used
systemic treatments for recurrent HGG so far'®.

In recent years, TTFs, a noninvasive anti-cancer modality
utilizing low-intensity, intermediate-frequency alternating electric
fields, has become more widely accessible. The EF-11 trial
(NCT00379470) in 2006 demonstrated the efficacy of TTFs in
patients with recurrent HGG, leading to FDA approval in 2011 for
its use in recurrent tumors. Subsequently, the EF-14 trial
(NCT00916409) in 2009 showed that combining TTFs with
maintenance therapy significantly improved OS in newly diag-
nosed patients, resulting in FDA approval in 2017. This pivotal
study marked the first advancement in over a decade to extend
OS for newly diagnosed HGG patients since the addition of TMZ to
radiotherapy®°. However, real-world uptake remains limited, with
only 18-20% of eligible patients receiving TTF in recent
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multicenter cohorts, with optimal usage (=75% daily, =18 h/day)
achieved by only a minority?'*2. Barriers include device burden,
cost and quality-of-life considerations, contributing to variable
adoption despite guideline endorsement®'%,

Emerging therapeutic modalities in HGG

In recent years, emerging targeted therapies and immunotherapy
approaches, supported by robust preclinical data, have been
extensively investigated in HGG, as reviewed previously®. Despite
substantial monetary investments and their representation in a
large proportion of clinical trials, these therapies have largely
failed to demonstrate meaningful improvements in survival
outcomes*”. Among the numerous strategies evaluated, bevaci-
zumab remains the only FDA-approved targeted therapy for HGG.
Here, we discuss the development of a few key therapies.

Targeted therapy. EGFR amplification is observed in approxi-
mately 50% of HGGs, with the EGFRvIIl variant the most common
alteration. So far, approximately 40 ongoing or completed trials
have explored various strategies targeting EGFR, including small-
molecule tyrosine kinase inhibitors, monoclonal antibodies,
antibody-drug conjugates (ADC) and vaccines. However, despite
the perceived importance of EGFR as a target in other cancers,
such as non-small cell lung cancer and colorectal cancer, EGFR-
targeted trials have largely failed to provide clinical benefit in
HGG?*. Several phase Il trials investigating gefitinib and erlotinib
showed no clinical efficacy in patients with newly diagnosed HGG,
regardless of EGFR amplification or mutation status, attributable to
the limited brain penetrance of these compounds®*™%. While
limited brain penetrance may contribute, emerging evidence
suggests that context-specific resistance mechanisms may play a
larger role. Interestingly, newer brain-penetrant EGFR inhibitors
such as osimertinib, while effective in EGFR-mutant non-small cell
lung cancer brain metastases®>*°, have not demonstrated mean-
ingful benefit in HGG, with reports showing rapid progression on
the drug®'~33. More recently, the fourth-generation EGFR inhibitor,
silevertinib, is being investigated in an ongoing phase I/Il trial
(NCT05256290) for patients with recurrent GBM harboring EGFR
alterations, with results currently pending®®. Other strategies
evaluating monoclonal antibodies, as well as the ADC, depatux-
izumab mafodotin, have similarly yielded disappointing results,
showing no improvement in clinical outcomes®. Several factors
may underlie this unexpected discrepancy between preclinical
promise and clinical failure, underscoring the unique challenges of
targeting EGFR in HGGs.

Recent studies have demonstrated that while EGFRvIIl is present
in primary tumors, it is often undetectable in nearly half of
recurrent tumors following SOC treatment. The loss of EGFRvII
expression in recurrent HGG is hypothesized to be driven by clonal
selection and tumoral heterogeneity, where treatment pressures
favor tumor subpopulations without EGFRVIll expression®. This
suggests that tumor recurrence may not be dependent on
EGFRVIII, raising important questions about its role in glioma
biology. While EGFRvIll may be a critical driver in primary tumor
initiation and early progression, it may no longer play a central
role in the mechanisms driving treatment failure and tumor
recurrence®*3’ However, despite EGFRVIII loss, EGFR expression is
rarely lost at recurrence, suggesting alternative resistance
mechanisms, with the transition of EGFR from chromosomal to
extrachromosomal DNA playing a potential role®. In addition, as
gliomas are rarely dependent on a single gene or pathway, EGFR
and EGFRvIll are likely to represent just one component of a
broader, highly interconnected signaling network®®. This complex-
ity explains the limited clinical efficacy of therapies targeting
individual molecular alterations, as such approaches fail to address
the adaptive and multifaceted nature of HGG biology®.

The PI3K/AKT/mTOR pathway, a hallmark of HGG associated
with poorer outcomes, has been the focus of numerous strategies
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supported by strong preclinical evidence. Initial optimism arose
from phase lll trials showing that the mTOR inhibitor everolimus
was able to reduce the volume of subependymal giant cell
astrocytomas*'. However, mTOR inhibitors in HGG have largely
failed to demonstrate meaningful benefit*’. These failures may
stem from compensatory AKT activation via unregulated
mTORC2 signaling and the absence of reliable predictive
biomarkers to identify treatment-responsive patients. In the
recently completed phase I/l GBM AGILE trial (NCT03970447),
paxalisib, a potent oral selective brain-penetrant small-molecule
PI3K/mTOR inhibitor, demonstrated a promising 3.8-month OS
improvement compared to SOC treatment in the MGMT
unmethylated subpopulation of newly diagnosed GBM, suggest-
ing potential benefit in selected patients*. This has led to the
design of an anticipated phase lll first-line study of paxalisib, in
addition to the ongoing studies of the drug in recurrent gliomas
(NCT05009992 and NCT05183204)"*.

BRAFY®%%F mutations, which are present in 1-8% of HGGs, and
up to 20% of cases in patients under 30 years of age, have
emerged as potentially actionable mutation in HGG*. Several case
reports have highlighted rapid and occasionally complete
responses to BRAF inhibitors (BRAFi) and BRAF-MEK inhibitor
combinations, a rarity seen in the setting of HGGs*. This has
driven ongoing research, with larger basket trials reporting similar
encouraging outcomes. Notably, the phase Il ROAR trial
(NCT02034110) demonstrated a 33% objective response rate in
31 patients with HGG, including three complete responses®’.
While further studies are needed to understand the long-term
clinical course of BRAFi in HGG, a key limitation of BRAFi is the
transient nature of their efficacy, with tumor recurrence develop-
ing over time. This phenomenon has been well-documented in
cancers such as melanoma, where reactivation of the MAPK
pathway or activation of alternative survival pathways drives
tumor regrowth despite continued BRAFi treatment. Similarly, this
effect has been reported in HGGs with the acquisition of
mutations in the RAS/MAPK pathway and histologic transformation
to gliosarcoma®®. Nonetheless, the promising initial response
observed in some patients with HGG underscores the therapeutic
potential of BRAFi.

More recently, IDH1/2 mutations, present in up to 80% of low-
grade gliomas (LGGs) and associated with favorable prognoses,
have been investigated as therapeutic targets in gliomas. The
phase Il INDIGO trial (NCT04164901) demonstrated that vorasi-
denib, an IDH1/2 inhibitor, significantly improved median PFS
(27.7 months versus 11.1 months with placebo) in patients with
IDH1- or IDH2-mutant LGGs. Following these results, vorasidenib
received FDA approval in 2024 for the treatment of /IDH mutant
LGGs. While these results are promising for LGGs, the role of IDH
inhibitors in HGG remains uncertain with further trials necessary to
define their role®.

It remains clear that genomics-driven strategies have failed to
deliver the anticipated clinical success in HGGs. Nevertheless,
precision oncology remains a promising strategy; however,
realizing its full potential requires acknowledgement of its core
principles and context-specific limitations. Ultimately, therapeutic
efficacy depends not on a treatment’s intrinsic potency but on
how well it aligns with the biological landscape it is applied to—a
critical consideration that must guide future therapeutic
development.

Factors limiting the success of targeted therapies

Precision oncology was founded on the premise of identifying
genetic or molecular changes that distinguish tumors from normal
tissues, thereby enabling the selection of efficient treatment
specific to the tumor. Fundamentally, the success of precision
oncology depends on three key factors: identifying targetable
variants, developing drugs that can effectively target these
variants and ensuring the effective delivery of these targeted
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therapies. Challenges at any of these stages can hinder the
success of targeted treatments. We discuss these factors in the
context of HGG.

Identification of targetable variants. Large-scale cancer genomics
initiatives, such as TCGA, International Cancer Genome Consor-
tium (ICGC), and Genomics Evidence Neoplasia Information
Exchange (GENIE) have facilitated the analysis of thousands of
tumor genomes to identify targetable variants®’. However, the
identification of clinically actionable variants in HGG remains
highly challenging. A major challenge in this process is the
differentiation between true ‘driver mutations’, which promote
cancer, from a vast majority of ‘passenger’ mutations, which
accumulate without causal relevance to oncogenesis. This is
further complicated by the fact that certain passenger mutations,
although seemingly noncontributory in isolation, may act as
‘conditional’ driver mutations in the presence of other muta-
tions®' >3, Furthermore, current computational algorithms, which
are principally guided by mutational frequencies, may overlook
low-penetrance genetic events, thereby missing rare but poten-
tially actionable drivers®*. More importantly, even after identifying
potential targets, our understanding of these variants often
remains limited as the discovery of new variants outpaces our
ability to classify them effectively®®. Together, these challenges
underscore the difficulty of reliably identifying targetable genomic
variants in HGG.

Consequently, alternative approaches such as transcriptomic
profiling have been pursued to better capture the dynamic nature
of tumor biology. In HGGs, a landmark study by Verhaak et al.
introduced gene expression-based classification of HGG into
classical, mesenchymal and proneural subtypes®. Building on
this, Neftel et al. demonstrated the existence of four cellular states
—NPC-like (neural progenitor like), OPC-like (oligodendrocyte
progenitor like), AC-like (Astrocyte like) and MES-like (mesench-
ymal like)—while highlighting the dynamic plasticity between
states and the potential for a single cell to generate all four
states®®. Remarkably, a single tumor often contains a mixture of
these states, with 60% of gliomas presenting with two or three
different subtypes within the same tumor mass. Glioma stem-cells
(GSCs) add further complexity, representing the apex cell
population in HGG, underpinning phenotypic diversity, therapeu-
tic resistance and recurrence®”. Through self-renewal and multi-
potency, they regenerate diverse cellular lineages following
treatment, while evading cytotoxic stress via enhanced DNA
damage repair, metabolic adaptation, quiescence and activation
of signaling networks>®*%, The cellular diversity of GSCs, spanning
distinct molecular subtypes and existing along gradients of
transcriptional states with unique vulnerabilities, further exempli-
fies tsfgxe difficulty of defining a single targetable vulnerability in
HGG"".

Ability to target oncogenic drivers. Second, there remains a
discordance in our ability to translate identified genetic or
molecular targets into clinically relevant drugs. Approximately
60% of small-molecule drug discovery projects fail owing to
identified targets considered ‘undruggable’. Prominent examples
include RAS, MYC and fusion transcription factors, which are
challenging to target owing to extensive protein—-protein interac-
tion interfaces and the absence of deep protein-binding sites.
Loss-of-function mutations are particularly challenging to treat
therapeutically, with frequently affected genes in HGG, such as
NF1, RB1, TP53, PTEN and ATRX, remaining largely uncharted
territory®.

In addition, delivering therapeutic agents to the brain is
notoriously challenging owing to the combined effects of the
blood-brain barrier (BBB) and the brain—-tumor barrier. The BBB, a
neurovascular construct regulating the passage of substances into
healthy brain tissue, limits the penetration of over 98% of small
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drug molecules, with those that do cross often being expelled by
efflux pumps such as P-glycoprotein. The brain-tumor barrier,
driven by the secretion of factors such as vascular endothelial
growth factor and hepatocyte growth factor, forms an abnormal
vascular structure with heterogeneous permeability, creating
hypoxic regions that impede drug delivery and promote
resistance. These stringent barriers have contributed to the high
failure rate of drug candidates during early development stages,
with FDA approval rates for CNS drugs notably lower than those
for non-CNS drugs®'. Understanding this barrier, recent
approaches have been developed to overcome the BBB and
enhance the bioavailability and efficacy of therapeutic agents,
including nanoparticles, hyperosmolar therapy, convection-
enhanced delivery and magnetic resonance-guided focused
ultrasound®.

Clinical efficacy of targets. Finally, it is imperative to note that
only a small subset of precision oncology strategies have resulted
in meaningful changes to cancer management, with the clinical
impact of targeted therapy varying considerably across cancer
types®.

Basket trials, designed to evaluate the efficacy of targeted
therapies across multiple cancer types sharing the same action-
able target, have become a widely employed strategy to evaluate
the effectiveness of molecular-targeted therapies for oncogene-
defined subsets of cancers. This approach offers the advantage of
simultaneously evaluating therapies for multiple tumor types,
including rare cancers, potentially accelerating the drug develop-
ment process. However, clinical trial outcomes revealed significant
limitations in patient-treatment matching and drug accessibility.
The phase Il SHIVA trial (NCT01771458) found that although
30-50% of patients harbored only driver mutations, only 26%
received matched treatments®®. Similarly, in the phase II NCI-
MATCH trial (NCT02465060), 38% of patients were matched to
targeted therapies, but only 18% received treatment®. A pooled
analysis of basket trials involving 1100 patients across 33 different
cancers found that targeted therapy guided by biomarkers
associated with driver mutations achieved only a 25% response
rate, highlighting the limitations of static biomarker-driven
approaches®®. Beyond these low matching rates, none of the
trials demonstrated a significant improvement in PFS®3, Consistent
with these findings, a recent large-scale real-world meta-analysis
reported that genomic profiling-guided therapy was delivered to
15.6% of patients with metastatic solid tumors, achieving an
objective response rate of 23.9% and modest gains in PFS and OS,
although the overall proportion of patients deriving benefit
remained limited®®.

These findings emphasize a central challenge in the practical
application of precision oncology: even when genomic profiling
successfully identifies actionable mutations, the clinical utility of
this information remains heavily constrained by the availability of
effective agents and the low proportion of patients who ultimately
receive matched therapy. While continued innovation in the
development of pharmacological targets is crucial, more can be
done to optimize the use of existing agents that may work beyond
genomically matched indications, allowing us to maximize the
potential of current therapies.

Therapeutic responses are shaped by the confluence of intricate
tumor—microenvironment interactions, epigenetic changes, phe-
notypic plasticity and factors far exceeding our current under-
standing or measurement capabilities®’. Biomarker-driven
strategies simplify these complexities by reducing gene and
molecular interactions to binary terms—such as the presence or
absence of a specific mutation—and measurable parameters
focused solely on targets under investigation. These approaches
assume that shortlisted parameters alone are sufficient to predict
clinical outcomes, disregarding the broader biological influences
that govern treatment response®. In reality, gene products rarely
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recurrent tumors through patient biopsies or resections. Tumor cells are isolated and processed to generate patient-derived tumor models,
including organoids, tumorspheres or xenografts. These models undergo high-throughput drug screening to identify effective, personalized
drug combinations, facilitating the development of individualized therapeutic strategies for patients with HGG.

function in isolation, as discussed previously, but operate within
highly interconnected networks where parallel systems can
compensate for missing components>®. Correspondingly, preci-
sion oncology has advanced toward integrative multiomics,
combining genomic, transcriptomic, proteomic, metabolomic
and epigenomic data, offering a panoramic view of tumor
biology®. Recent integrative multiomics studies on HGG tumors
have comprehensively characterized the disease, stratifying
patients into distinct molecular subtypes, each with its own
unique predicted susceptibilities’®”3. While these approaches
have deepened our understanding of the disease, current
strategies are largely retrospective or predictive in nature, and
prospective evidence demonstrating that multiomics data can
directly inform clinical decision-making remains limited. Further-
more, the generation of vast, multidimensional datasets poses
substantial translational challenges, particularly in analyzing such
complex information in a clinically relevant manner that directly
captures how these alterations converge to determine therapy
response and can be readily leveraged by clinicians®.

Collectively, these challenges underscore the need for strategies
that bridge the complex and dynamic molecular networks with
functional therapeutic insights. FPO has emerged as a promising
strategy to address this gap by directly linking functional
responses of biological systems with actionable therapeutic
implications, evaluating tumor cell behavior in its entirety rather
than focusing on discrete molecular alterations>°.

FPO: THE BRIDGE BETWEEN GENOTYPE AND PHENOTYPE

FPO represents a transformative strategy that carries the potential
to bridge the gap between molecular characterization and
actionable therapeutic insights. Functional approaches that
involve dynamic perturbations of tumor cells and the measure-
ment of their responses capture the complexities and functional
dependencies of cancer cells’®. By harnessing the potential of
existing drug libraries, FPO broadens the scope of treatment
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options available to patients, extending beyond molecular
alterations and standard protocols. Prioritizing functional outputs
over purely mechanistic understanding, FPO aligns with the need
for clinically translatable strategies capable of addressing the
heterogeneity and adaptability of malignancies, an approach that
has shown promise in both pediatric and adult cancers’. This is
especially noteworthy in the context of hard-to-treat, highly
heterogeneous malignancies such as gliomas and sarcomas, and
rare cancers, where limited molecular insights and a scarcity of
effective treatment options pose considerable challenges to
clinical management’®. While FPO may be a relatively recent
addition to the precision oncology landscape, its conceptual roots
lie in foundational pharmacological practices: selecting therapeu-
tic targets based on cellular responses, a principle through which
virtually every chemotherapy agent used in oncology was derived
from. This same principle is now applied at an individual patient
level, allowing for personalized treatment strategies tailored to the
specific functional characteristics of each patient’s cancer.

FPO workflows commence with the collection of patient-
derived samples, such as tumor tissue or blood, which are utilized
to generate patient-derived models, including organoids, explants
or spheroids. These models are then employed for drug screening
and functional assays to inform personalized therapeutic strate-
gies. This approach may be used to predict patient responses to
SOC therapies, enabling improved patient stratification, while also
expanding to a broader drug repository to facilitate the
repurposing of chemotherapy and targeted agents (Fig. 2). A
central assumption underpinning the success of this strategy is
the ability of these models to faithfully retain the molecular and
phenotypic fidelity of their parental tumor, which is crucial for
accurate clinical extrapolation. Patient-derived xenograft (PDX)
models have been shown to faithfully recapitulate tumor features
with high fidelity, accurately reflecting the biological character-
istics and therapeutic responses observed in the original patient
tumors”’. In PDX models of HGGs, in addition to genomic,
morphological and pathological similarities, patient-specific

SPRINGER NATURE
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responses to TMZ and radiotherapy as part of the SOC treatment
were successfully replicated’®. Similarly, patient-derived organoids
have demonstrated strong genotypic and phenotypic concor-
dance with their parental tumors, including histological features,
cellular diversity, gene expression and mutational profiles of
corresponding parental tumors’®. A growing area of research has
focused on enriching these models for GSC populations, given
their rarity and tendency to be missed by bulk genomic or
transcriptomic analyses®®. Enrichment of GSC populations has
been successfully achieved through the establishment of patient-
derived gliomaspheres, which serve as in vitro models that
selectively expand stem-like cell populations from tumor samples
for downstream functional assays®'®2. Such enrichment enables
direct interrogation of the drug sensitivities and adaptive
resistance mechanisms of the very cells that drive recurrence,
thereby guiding the development of more effective, patient-
tailored therapies. Emerging platforms, such as microfluidics and
engineered microenvironments aim to further recapitulate mole-
cular and mechanical cues in human tissues®®>. Although the
overarching concept of the various patient-derived models are the
same, model-specific drawbacks and challenges that are cancer
specific exist that need to be considered when selecting the
appropriate model®®,

While FPO approaches are still emerging, they have demon-
strated notable success across multiple cancer types in both
pediatric and adult populations (Tables 1 and 2). In pediatric
patients with relapsed or refractory malignancies, a prospective
observational study (NCT03860376) demonstrated that FPO-
derived treatments significantly improved PFS by more than 1.3-
fold in 83% of pediatric cases compared to prior treatments®.
Encouraged by these findings, ongoing trials are expanding this
approach to larger cohorts of children (NCT05857969) and adults
(NCT06024603)%. In adults, EXALT-1, a phase llb trial
(NCT03096821), was the first precision oncology trial to use
functional assays to guide the identification of personalized
therapies®®. At a median follow-up of 23.9 months, 54% of patients
demonstrated a more than 1.3-fold improvement in PFS
compared to prior therapies, with 40% achieving exceptional
responses®. Notably, 23% of patients remained progression-free
at 12 months after FPO-guided therapy, significantly outperform-
ing the 5% progression-free rate observed with previous
treatments®. This work forms the basis for the recently initiated
prospective randomized trial EXALT-2 (NCT04470947)%. Since
then, several other trials have been initiated across both
hematological malignancies and solid tumors, albeit considerably
fewer in the latter’>#85°,

In HGG, four ongoing FPO trials are employing ex vivo
approaches in guiding the management of primary and recurrent
tumors (Table 2). Among them, the phase Il EVIDENT trial
(NCT05231655), part of a pan-cancer study on solid tumors, and
the phase Il 3D-PREDICT trial (NCT03561207) employ functional
testing in treatment-naive HGG to predict response to SOC
treatment. Preliminary results from the 3D-PREDICT study
demonstrated the ability to identify TMZ responders irrespective
of MGMT methylation status, with the identification of patients
who responded to TMZ despite being MGMT unmethylated. Test-
predicted responders had a median OS postsurgery of
11.6 months compared to 5.9 months for test-predicted nonre-
sponders. With functional data provided within 7-10 days of tissue
receipt, patients with HGG whose tumors are predicted not to
respond favorably to TMZ could be preferentially directed to
clinical trials or managed in ways that might offer greater clinical
benefit™®. Currently, MGMT promoter methylation status is the
primary metric used to predict responses to TMZ clinically.
However, its limitations are well-documented, as both methylated
patients who respond poorly to therapy, and unmethylated
patients who respond favorably have been observed in numerous
studies. Consequently, while MGMT methylation status may serve

SPRINGER NATURE

as a predictor of response, its impact on clinical decision-making
regarding TMZ administration remains limited®'. Its role is also
limited owing to the lack of approved alternative cytotoxic
therapies in the first-line setting. These findings highlight the
importance of complementing static biomarkers such as MGMT
methylation status with functional drug studies to improve the
selection of therapeutic targets for patients. Other ongoing trials
include the phase la/llb trial (NCT05532397) for recurrent HGG,
which utilizes the quadratic phenotypic optimization platform
(QPOP), a computational analytic platform designed to identify
top ranking drug combinations and the phase Il ATTRACT trial
(NCT06512311), which similarly employs ex vivo drug sensitivity
testing to personalize treatment strategies for patients® %,

In addition to the identification of personalized drug targets,
functional drug screens have played a pivotal role in accelerating
therapeutic discovery. A notable example is the identification of
panobinostat as a potential therapy for pediatric diffuse midline
gliomas following a drug screen of 83 compounds. These findings
have progressed to several phase | clinical trials (NCT02717455,
NCT03566199 and NCT03632317)°. Similarly, in adult HGGs,
functional screens across 132 neuroactive drugs revealed that
the antidepressant vortioxetine synergizes with current SOC
chemotherapies in vivo®. Furthermore, functional screens also
provide valuable mechanistic insights, elucidating the mechan-
isms of action of existing approved drugs, thereby optimizing their
clinical use. For instance, the lack of efficacy of BRAFi in BRAF"6%%.
mutated colorectal cancers, despite their success in melanoma
with the same mutation, was clarified through functional studies,
which identified feedback activation of EGFR in colorectal
tumors®’. Together, these examples highlight the potential of
FPO both in driving therapeutic innovation and in refining the
clinical application of existing agents through deeper mechanistic
understanding of tumor biology.

Delivering drug sensitivity profiles within clinically relevant
timelines remains a crucial hurdle, requiring efficient clinic-to-
bench workflows and rapid generation of results. Achieving this
demands close collaboration between neurosurgeons, oncolo-
gists, pathologists and scientists. Ideally, laboratories conducting
FPO analysis should be located near major hospitals performing
brain tumor resections to ensure timely access to high-quality
tumor samples. A major obstacle in HGG is the acquisition of
sufficient, high-quality tumor material for analysis, which often
requires invasive surgical resections or biopsies. This limitation is
exacerbated in deep-seated or recurrent tumors, where less than
10% of recurrent HGGs are eligible for resection. In addition,
factors such as tumor necrosis and preoperative steroid use
frequently impede successful ex vivo expansion of tumor cells,
with these challenges particularly pronounced in the context of
recurrent tumors®*, Despite these obstacles, studies by Jacob et al.
have demonstrated the feasibility of generating and biobanking
patient-derived HGG organoids, achieving an overall success rate
of 91.4%"°. However, success rates vary depending on the tumor
subtype, with lower success rates observed for IDHI-mutant
tumors (66.7%) and recurrent tumors’®.  Most recently, a
2025 study indicated a 66.5% success rate for establishing
patient-derived HGG organoids®®, while other studies have
reported success rates of 80-90% in HGG PDX models’®,

Another key challenge of current models is their inability to
replicate key aspects of the tumor microenvironment necessary
for evaluating specific therapies. Therapeutic agents such as
bevacizumab, which target angiogenesis cannot be effectively
tested in many current models owing to their inability to replicate
the vascular architecture required for assessing such treatments.
Similarly, immunotherapies require advanced 3D culture systems
capable of replicating immune-tumor interactions, as traditional
models, including 2D systems and basic tumorspheres models
lack the complexity needed to evaluate these therapies effectively.
The development of advanced platforms, including microfluidic

Experimental & Molecular Medicine
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o Clinically well-established with
strong evidence base
o Rapid and cost-effective

Targeted
therapies
z—
i Genomics [
@ precision |
medicine y
Actionable
mutations

>)

Genomic profiling

o Not all cancer types have defined
genomic drivers

e Tumour biology and vulnerabilities is
not dependent solely on genomics

L.S.H. Goh et al.

o Establishment of pipelines can be

technically demanding, with
turnaround times which may not be
clinically suitable

Drug sensitivity
reports

.\“ Ex vivo
\ . drug
\ Functional @ @ testing
‘ precision £
\ medicine x

N =P

Patient-derived
models

o Patient-derived models are dynamic
e Functional assays can predict the

sensitivity of heterogeneous tumour
cells without molecular biomarkers

Fig. 3 Complementary strengths of genomic and functional precision medicine. Genomic and functional approaches provide distinct but
complementary insights for guiding treatment. Genomics enables rapid, evidence-based identification of actionable mutations, but may
overlook nongenomic vulnerabilities. Functional testing, though more technically demanding, captures tumor dynamics and drug responses

beyond what is detectable through molecular profiling.

CONCLUSION AND FUTURE PERSPECTIVES

In summary, despite two decades of effort, precision oncology in HGG
has fallen short of delivering transformative clinical outcomes. FPO
holds promise as a complementary approach, moving beyond
molecular profiling to incorporate patient-specific models that
capture the unique biology of each tumor. Advancing the scalability
of patient-derived models and integrating them with high-
throughput drug screening and molecular profiling are crucial for
positioning FPO as a foundational approach for both therapeutic
development and personalized patient treatment. A critical challenge
remains in translating these insights into clinical workflows. Achieving
this will require coordinated efforts among multidisciplinary teams,
including oncologists, pathologists, bioinformaticians and laboratory
scientists, to streamline sample processing, ensure robust data
interpretation and deliver individualized treatment strategies.

AVAILABILITY OF DATA AND MATERIALS

Data for this Review were identified through searches of PubMed,
MEDLINE, ClinicalTrials.gov and references from relevant articles
using the terms ‘functional precision oncology’, ‘high-grade
glioma’, ‘patient-derived models’, ‘drug screening’, ‘clinical trials’
and ‘genomics’. Abstracts and meeting reports were included only
when directly related to published work. Only articles published in
English between 1975 and April 2025 were considered.
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