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Abstract

Background Pediatric high-grade gliomas (pHGG) are among the most aggressive childhood brain tumors, with limited
treatment options and poor prognosis. Vaccine-based immunotherapy offers a promising strategy by leveraging tumor-spe-
cific or associated antigens to stimulate durable anti-tumor immune responses with minimal toxicity.

Discussion This review outlines the scientific rationale for vaccine therapies in pHGG, detailing key targets such as glioma-
associated antigens (EphA2, IL-13Ra2, survivin), driver mutation—derived neoantigens (H3.3K27M, TP53, IDH1), and viral
antigens (CMV pp65). We evaluate current vaccine platforms, including peptide vaccines, dendritic cell vaccines, mRNA-
based vaccines, and neoantigen-personalized approaches, highlighting early-phase clinical trial results that demonstrate
safety and immunogenicity. Despite encouraging preliminary data, several challenges hinder clinical translation, includ-
ing the distinct immune environment in the central nervous system, intratumoral heterogeneity, low mutational burden,
immunosuppressive microenvironments, steroid use, and logistical hurdles in vaccine production and trial design. Future
research must address these barriers through optimized antigen selection, combinatorial therapies, novel delivery systems,
and pediatric-specific immune profiling.

Conclusion With continued multidisciplinary collaboration, vaccine therapies may emerge as a meaningful addition to the
therapeutic arsenal for children with pHGG.

Keywords Pediatric high-grade glioma - Vaccine immunotherapy - Glioma-associated antigens - Peptide vaccines -
Neoantigen vaccines - mRNA vaccines

Introduction

Pediatric high-grade gliomas (pHGG) represent the most
aggressive and lethal of the childhood brain tumors. Prog-
nosis remains dismal, with median survival less than 24
months in 70-90% of patients, and less than 1 year in
most subtypes [1-5]. The current standard of care, which
includes maximal safe surgical resection and radiotherapy,
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has limited efficacy due to the infiltrative nature of these
tumors, their resistance to cytotoxic agents, and the frequent
involvement of eloquent or surgically inaccessible brain
regions such as the brainstem [1, 4-6].

Over the past decade, molecular profiling has revolution-
ized the classification of pHGG, distinguishing them from
adult gliomas and uncovering key oncogenic drivers unique
to the pediatric population. This shift from reliance upon
pathologic appearance to molecular identity is reflected
in the most recent 2021 WHO guidelines, which heavily
depend upon direct tissue sequencing for tumor classifi-
cation [7, 8]. A growing understanding of the key driver
mutations in pHGG, such as H3 K27M in diffuse midline
glioma, H3 K27-altered (DMG), and H3 G34R/V in diffuse
hemispheric glioma, H3 G34-mutant (DHG), has not only
improved diagnostic precision but also opened new avenues
for targeted therapies [1, 7]. Nevertheless, translating these
insights into effective treatments has remained challenging,
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particularly given the unique biology and immunology of
pediatric brain tumors.

Immunotherapy has emerged as a promising strategy in
oncology, with dramatic successes in hematologic malig-
nancies [9, 10] and select adult solid tumors [11, 12]. How-
ever, its application in pediatric neuro-oncology has lagged,
constrained by factors such as the distinct nature of the
immune system within the central nervous system (CNS),
the immune-suppressive tumor microenvironment (TME),
and the low mutational burden characteristic of pHGG [6,
13-16]. Recent landmark trials utilizing chimeric antigen
receptor (CAR) T-cell therapy have demonstrated meaning-
ful biological activity and early clinical responses, spark-
ing increasing interest in the potential of immunotherapy
for pHGG. BrainChild-03 improved median survival for
21 DIPG patients to 19.8 months utilizing repeated intra-
cerebroventricular (ICV) B7-H3 CAR T-cell dosing with
only one dose-limiting toxicity [17]. Another phase-I clini-
cal trial (NCT04196413) employed single-dose IV and
subsequent ICV infusions of GD2-CAR T-cells in lym-
phodepleted DIPG or spinal DMG patients, and identified
volumetric reductions in 7 of 11 patients receiving therapy
[18]. Notably, three patients on the higher dosing regimen
developed dose-limiting cytokine release syndrome, with
additional instances of tumor inflammation-associated neu-
rotoxicity (TIAN) or immune effector cell acute neurotoxic-
ity syndrome (ICANS). These milestone studies highlight
the promising therapeutic potential, as well as the logisti-
cal and safety hurdles still to be addressed, of CAR T-cell
therapy for pHGG.

While adoptive cellular therapies including CAR T-cells
have provided important data to validate that the immune
system can indeed be therapeutically mobilized against
pHGG, these ongoing challenges may underscore the need
for complementary immunotherapeutic modalities. Anti-
tumor vaccine strategies represent a particularly attractive
approach due to their relatively non-invasive administra-
tion and more favorable toxicity profile compared to other
immunotherapeutic modalities [19, 20]. Vaccines aim to
stimulate the patient’s immune system to recognize tumor-
associated antigens (TAA), thereby enabling a durable anti-
tumor response with minimal off-target effects and without
the need for direct cellular replacement. In early-phase tri-
als, some vaccine platforms have shown encouraging safety
and immunogenicity in children with high-grade gliomas
[21-26]. Other pHGG vaccine modalities remain in the pre-
clinical stage with encouraging preliminary data. However,
numerous challenges remain, including the identification of
optimal antigen targets, overcoming the barriers imposed by
CNS relative immune privilege and glioma-mediated immu-
nosuppression, and ensuring timely vaccine delivery given
the rapid progression of pHGG. Additionally, ethical and
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logistical considerations in the pediatric population require
careful navigation, particularly when pursuing highly indi-
vidualized experimental therapies in patients with limited
therapeutic alternatives.

This review summarizes the current landscape of vac-
cine-based immunotherapy for pHGG, including peptide,
dendritic cell (DC), mRNA, shared mutant neoantigen, and
personalized neoantigen vaccine therapies. We outline the
scientific rationale for vaccine development in this popu-
lation, review key tumor antigens and immunologic barri-
ers, and evaluate the major vaccine platforms under clinical
investigation.

Rationale for vaccine immunotherapy in
pediatric HGG

Given the dismal prognosis and resistance to conventional
therapies, novel treatment strategies for pHGG are critical.
Advances in modern sequencing techniques and growing
insight into how histone-based mutations drive tumorigen-
esis have enabled the development of targeted molecular
approaches [27, 28]. Among these, vaccine-based therapies
harness the body’s immune system to recognize and attack
TAAs. Although still investigational, early-phase clini-
cal trials of multiple vaccine platforms have demonstrated
immunogenicity and favorable safety profiles. A schematic
representation of the various vaccine modalities currently
under investigation is presented in Fig. 1. Current efforts
are focused on refining antigen selection, enhancing deliv-
ery platforms, and evaluating synergistic combinations with
other immunotherapeutic agents. Continued clinical inves-
tigation is essential to confirm the therapeutic potential of
pHGG vaccines in larger patient cohorts and to translate
promising early findings into meaningful clinical benefit.

Tumor antigens and potential vaccine
targets

Considerations for antigen selection

Antigen selection for vaccine therapies is predicated upon
the identification of TAAs or neoantigens that are differen-
tially expressed by tumor cells compared to healthy brain
parenchyma. Comprehensive high-throughput genomic and
proteomic sequencing enables the discovery of antigens,
which must then be evaluated for major histocompatibil-
ity complex (MHC) binding affinity and potential to elicit
immunogenic T-cell responses [29].

Several critical considerations guide the selection of suit-
able antigens. First, candidate antigens must be abundantly
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Fig. 1 Immunotherapeutic strategies under investigation for pediatric gen receptor (CAR) T-cell therapies. Innate immune therapies include
high-grade gliomas. Adaptive immune therapies include peptide vac- natural killer (NK) cell therapy and oncolytic viral therapy
cines, mRNA vaccines, dendritic cell (DC) vaccines and chimeric anti-

and consistently overexpressed in tumor cells relative to  provoke an effective T-cell-mediated immune response.
normal tissue, ensuring sufficient antigen presence to elicit ~ Third, selected TA As should ideally exhibit high prevalence
a robust immune response. Antigens that are minimally  across patient populations to ensure broad applicability.
expressed in normal, healthy tissues are preferred to reduce ~ Tumor-specific neoantigens derived from unique somatic
the risk of off-target autoimmune effects and to enhance = mutations may offer heightened specificity and avoid off-
therapeutic specificity. Second, antigens should demon-  target effects; however, their widespread applicability could
strate strong immunogenicity, indicating their capacity to  be limited given tumor heterogeneity across patients and
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pHGG subtypes. Lastly, antigens implicated in poor prog-
nosis or therapy resistance are particularly attractive as their
immunologic targeting may not only induce tumor regres-
sion but also disrupt pathways involved in tumor progres-
sion. Given the limited number of eligible patients and the
poor prognosis of pHGG, only the most promising and rig-
orously validated antigens must be advanced into clinical
trials to maximize the potential for therapeutic success and
minimize risk in this vulnerable population.

TAAs in Glioma

TAAs identified in gliomas represent a group of frequently
overexpressed or uniquely mutated proteins that are con-
served across many pHGG patients. This makes them
appealing targets for vaccine-based therapies given their
wide applicability across the population. Prominent TAAs
currently under investigation include EphA2, IL-13Ra2,
and survivin [22, 23]. These antigens are prioritized based
on consistent overexpression in glioma cells relative to nor-
mal tissue, demonstrated capacity to induce antigen-specific
T-cell responses, and established safety profiles in prelimi-
nary clinical studies [30, 31]. Beyond these well-established
antigens, emerging mRNA-based vaccine strategies have
expanded the repertoire of targetable antigens, encompass-
ing proteins such as TP53, IDHI1, C3, TCF12, ANXAS,
FKBP10, MSN, and PYGL [32, 33]. These candidate anti-
gens have been identified through integrative genomic and
immunologic analyses as correlating strongly with poor
prognosis and immune cell infiltration, underscoring their
potential clinical significance in vaccine formulations for
pHGG.

Neoantigens Derived from Somatic Mutations

Neoantigens, derived from tumor-specific somatic muta-
tions, represent highly specific targets for vaccine therapies
and can be broadly categorized into shared mutant antigens
(arising from recurrent cancer-specific mutations) or per-
sonalized neoantigens (patient-specific genetic alterations).
Because neoantigens are not present in normal tissues, they
bypass central immune tolerance and reduce the risk of
autoimmunity. Among pHGG, the most extensively studied
shared mutant neoantigen is the H3.3K27M mutation, a hall-
mark alteration in DMG [34, 35]. This mutation generates
a unique and immunologically distinct peptide sequence
which is absent in healthy tissues, making it an attractive
target for antigen-specific vaccine development. Additional
shared mutant neoantigens, including recurrent mutations
in IDHI1 and TP53, have also emerged as potential vaccine
targets [32, 35]. In contrast, personalized neoantigens arise
from unique, patient-specific somatic mutations and give
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rise to de novo peptide sequences that vary between patients.
These personalized neoantigens form the basis for individu-
alized neoantigen vaccine strategies. Together, neoantigen
targets highlight the potential of personalized vaccine strat-
egies to elicit robust, tumor-specific immune responses in
pHGG while avoiding off-target autoimmune effects.

Immunologic challenges in pediatric brain
tumors

The CNS exhibits an immune landscape fundamentally
distinct from the rest of the body, characterized by tightly
regulated immune responses to protect neural tissue from
inflammatory damage. While the brain has historically
been described as immune privileged, this privilege is now
understood to be relative rather than absolute, as activated
T-cells are capable of trafficking across the BBB and mount-
ing immune responses under physiological and therapeutic
conditions such as systemic immunotherapy [36, 37]. Nev-
ertheless, CNS immune responses remain tightly regulated
through the BBB, specialized lymphatic drainage, and
immunoregulatory mechanisms at CNS interfaces such as
the meninges and perivascular spaces. While immune sur-
veillance does occur, robust immune response within the
parenchyma is limited to prevent collateral damage to neu-
ral tissue with limited regenerative capacity [36, 38]. As a
result, immune-based therapies in the CNS (particularly in
critical midline structures such as the brainstem) carry a risk
of immune-mediated pseudo-progression. In these regions
with limited tolerance for treatment-induced inflammation
and edema, this phenomenon can mimic tumor progression,
lead to worsening neurologic compromise and necessitate
urgent administration of corticosteroids [22]. Therefore,
therapeutic strategies aiming to stimulate antitumor immu-
nity in the CNS must overcome these barriers to enable
effective immune cell infiltration and activation within the
tumor microenvironment.

In addition, as part of their resistance mechanism, pHGGs
actively create an immunosuppressive microenvironment
that inhibits effective antitumor immunity. This environ-
ment is marked by low cytotoxic T-cell infiltration, abundant
immunosuppressive myeloid populations, and secretion of
inhibitory cytokines like TGF-p and IL-10 [13, 36]. Single-
cell transcriptomics have demonstrated that myeloid cells
represent the predominant immune population in pHGG,
yet their composition and functional states are distinct from
those observed in adult glioblastoma and vary according
to tumor location and histone mutations [6, 39, 40]. Pedi-
atric gliomas, particularly H3.3K27M DMG, are enriched
for heterogeneous disease-associated myeloid populations
that exhibit impaired interferon signaling, limited antigen
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presenting capacity, and express chemokines to recruit addi-
tional suppressive myeloid cells and restrict lymphocyte
infiltration [39]. Within this myeloid compartment, resi-
dent microglia and infiltrating bone-marrow derived mac-
rophages (BMDMs) play complementary roles. Microglia
preferentially localize to tumor margins and perivascular
regions, whereas BMDMs infiltrate the tumor core and
actively suppress T-cell proliferation [39, 41, 42]. Together,
this myeloid landscape restricts T-cell access to the tumor
core and suppresses their function, providing a possible
mechanistic explanation for limited intratumoral immune
activity despite detectable peripheral vaccine responses.

Another challenge is the low tumor mutational burden
seen in pHGGs. Compared to many tumor types seen in
adults, which are generally thought to develop over years
as numerous somatic mutations accumulate, pHGGs exhibit
a characteristically low mutational burden and instead arise
from developmental and epigenetic alterations. This scar-
city of somatic mutations limits the number of neoantigen
targets for vaccine therapies as fewer TAAs are available for
immune recognition [6, 14, 43].

Aside from the tumor-specific challenges, there are also
challenges inherent to the pediatric population. For example,
the pediatric immune system is characterized by a higher
proportion of naive T-cells and fewer memory T-cells and
thus presents unique challenges for vaccine therapies. These
less-experienced immune systems have reduced capacity
for robust and durable adaptive responses to novel antigens
[44]. When compounded by the relative immune privilege
of the CNS and an immunosuppressive tumor microenvi-
ronment, the efficacy of vaccine-based interventions may be
severely limited. In addition, emerging evidence suggests
that T-cell dysfunction in pHGG differs from the classical
T-cell exhaustion observed in adult glioblastoma. Whereas
glioblastoma is characterized by profound T-cell exhaustion
with upregulation of immune checkpoint molecules and
clonal T-cell expansion [45], pHGG instead exhibit sparsely
infiltrating T-cells in immature states, limited clonal expan-
sion, and reduced effector functionality [40, 42]. These dif-
ferences suggest that immune failure in pHGG may reflect
impaired T-cell priming and recruitment rather than exhaus-
tion alone.

This challenge is further compounded by steroid therapy,
which is frequently used to manage cerebral edema in pHGG
patients. Unfortunately, although beneficial for edema, ste-
roids suppress immune function, resulting in reduced lym-
phocyte counts and impaired antigen presentation. Coupled
with lymphopenia resulting from tumor progression and
conventional therapies including temozolomide and radia-
tion therapy, these immunosuppressive effects greatly
impair vaccine-induced T-cell responses [21, 24]. The deci-
sion to offer steroids must be carefully considered in patients

eligible for vaccine-based therapies, weighing the dangers
of worsening cerebral edema against a possible reduction in
vaccine efficacy. Future clinical investigations should rigor-
ously monitor if patients are concurrently receiving steroid
treatment to better evaluate if steroid use is contraindicated
in pHGG vaccines.

Vaccine strategies, trial outcomes, and
biomarkers of response

Peptide-based vaccines

Peptide-based vaccines utilize short amino acid sequences
corresponding to epitopes derived from TAA to elicit an
immune response against cancer cells expressing the chosen
antigen. Upon administration, these peptides are internal-
ized by antigen-presenting cells (APCs) and presented on
the cell surface by MHC molecules. This activates antigen-
specific CD8" cytotoxic T lymphocytes or CD4" helper
T-cells, thereby initiating a targeted immune response
[21-24]. Peptide-based vaccines currently under investiga-
tion for pHGG target both shared TAA and tumor-specific
neoantigens.

H3.3K27M peptide vaccine

The H3.3K27M,, _ 35 peptide vaccine is an investigational
therapy targeting the H3.3K27M mutation characteristic of
DMG. A phase I trial (NCT02960230) evaluating this vac-
cine enrolled 29 children with H3.3K27M-positive DMG
and demonstrated that the vaccine was well tolerated with-
out severe immune-related adverse events (Table 1) [21].
Patients who mounted an H3.3K27M-specific CD8" T-cell
response exhibited significantly improved median overall
survival (OS) compared to non-responders. However, con-
current corticosteroid use was associated with diminished
CD8" T-cell responses, potentially blunting therapeutic effi-
cacy. While this vaccine was initially investigated in patients
with the human leukocyte antigen (HLA) subtype A02:01,
emerging analyses suggest that immune responses to this
vaccine can involve multiple HLA class II alleles and B-cell
activation, indicating broader immunogenic potential.

In parallel, important insights have emerged from adult
studies utilizing the long 27-mer H3K27M,, _ 4, peptide
vaccine in the INTERCEPT H3 trial (NCT04808245). In
a compassionate-use cohort of eight adult DMG patients,
vaccination was well-tolerated with only grade 1 adverse
events, and the vaccine induced mutation-specific immune
responses detectable in both peripheral blood and cerebro-
spinal fluid [48]. Subsequent in-depth immune profiling
of a single patient demonstrated that the 27-mer H3K27M
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peptide resulted in a robust CD4" T-cell response with
polyclonal T-cell receptor expansion across multiple HLA
alleles [46]. While these findings are derived from adult
DMG patients and cannot be directly extrapolated to pedi-
atric populations, they provide evidence that H3K27M
peptide vaccines can induce coordinated adaptive immune
responses.

However, recent work by Wang et al. challenges the
feasibility of this approach [49]. Using patient-derived
H3.3K27M DMG models, they demonstrated that the
H3.3K27M,¢ 55 peptide is not endogenously presented
at detectable levels on HLA-A02:01* tumor cells. Mass
spectrometry failed to identify the peptide-HLA complex
on multiple diffuse intrinsic pontine glioma (DIPG) cell
lines and engineered T-cells specific for H3.3K27M-HLA-
A*02:01 failed to kill patient-derived tumor cells. These
findings suggest that, despite in vitro binding capacity, the
absence of natural peptide presentation may render vaccines
or T-cell therapies targeting this epitope ineffective. Further
investigation is ongoing.

TAA peptide vaccine

TAA peptide vaccines targeting EphA2, IL-13Ra2, and sur-
vivin have demonstrated safety and modest immunogenic-
ity in pHGG (NCTO01130077, Table 1) [22]. There were no
observed dose-limiting toxicities, and results of enzyme-
linked immunosorbent spot analysis (ELISA) demonstrated
the TAA peptide vaccine was able to induce antigen-spe-
cific T-cell responses in 62% of patients to at least one of
the three TAA epitopes. Immunologic pseudo-progression
was reported in five patients (19%), who required cortico-
steroid management and cessation of subsequent TAA vac-
cine, although some patients were able to resume at a lower
poly-ICLC dose after symptomatic resolution [22]. Another
cohort study of twelve children with recurrent pHGG from
the same trial (NCT01130077) showed median progres-
sion-free survival (PFS) and OS were 4.1 and 12.9 months,
respectively. This study demonstrated only grade 1 and 2
adverse events with a favorable safety profile, and 90% of
evaluable patients had TAA immune reactivity (Table 1)
[23].

CMV pp65 (PEP-CMV) peptide vaccine

Human cytomegalovirus (CMV) epitopes have been found
in 67% of pediatric high-grade gliomas, with prior work
utilizing a dendritic cell vaccine showing modest efficacy
[24]. The PEP-CMYV pp65 peptide vaccine is a 26-amino-
acid chain that targets the CMV pp65 antigen on pHGG
cells. Notably, this antigen is absent in healthy brain tissue.
A phase I trial (NCT03299309) showed the safety of the

CMYV pp65 vaccine with mostly grade 1-2 adverse events,
although rare severe CNS toxicities such as cerebral edema
were reported. The vaccine elicits pp65-specific T-cell
responses in 76% of patients with a median PFS of 2.5
months and OS of 6.5 months (Table 1) [24]. A multi-insti-
tutional phase II trial (NCT05096481) is ongoing to evalu-
ate efficacy and immunological response in a larger cohort.

Notably, the presence of CMV within gliomas remains
an area of ongoing controversy. While multiple groups
have reported detection of CMV proteins or nucleic acids
in glioma specimens using immunohistochemistry or PCR-
based approaches [50, 51], others have failed to detect CMV
[52, 53]. These discrepancies have raised concerns regard-
ing assay sensitivity, specificity and reproducibility. Impor-
tantly, even in the absence of productive viral replication,
low-level CMV antigen expression has been proposed as a
potential immunotherapeutic target [53], providing a ratio-
nale for continued investigation of CMV peptide vaccines
despite this ongoing controversy.

In summary, peptide vaccines targeting H3.3K27M,
shared TAA (EphA2, IL-13Ra2, survivin), and CMV pp65
are actively under clinical investigation for pHGG. Early-
phase trials consistently demonstrate safety and modest
immune response generation in over half of patients, though
efficacy data remain to be validated in larger, controlled
studies.

Dendritic cell vaccines

Dendritic cell (DC) vaccines leverage the antigen-presenting
function of dendritic cells to stimulate immune responses
against high-grade gliomas. Patient-derived monocytes are
differentiated, loaded with tumor antigens, and administered
subcutaneously or intradermally. These DCs migrate to
draining lymph nodes, activating CD8* cytotoxic and CD4*
helper T-cells [25, 26]. This approach aims to overcome
glioma-induced immune suppression by generating robust,
tumor-specific immunity.

While DC vaccines have undergone extensive evalua-
tion in the adult glioblastoma population, few trials evaluate
their efficacy in the pHGG population. Ardon et al. dem-
onstrated the feasibility of autologous tumor-lysate loaded
DC vaccines in 45 children with relapsed malignant brain
tumors, including 33 with pHGG [25]. Their study reported
a median OS of 13.5 months for the HGG cohort, with six
long-term survivors exceeding 24 months. DC vaccination
was well tolerated, with only mild adverse events (Table 1).
The ADDICT-pedGLIO (NCT04911621) trial is an ongoing
investigation into a promising evolution of DC vaccinations
utilizing Wilms’ tumor 1 (WT1) mRNA, an antigen over-
expressed in pHGG including DIPG. This Phase I trial will
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establish safety and feasibility of DC vaccine leukapheresis
protocols targeting the WT1 antigen in 10 children.

Lasky et al. conducted tumor lysate-pulsed DC vac-
cination in three children with high grade glioma
(NCT00107185) [26]. They showed a favorable safety pro-
file and only mild adverse events, including one patient who
had a transient, asymptomatic elevation of alkaline phos-
phatase. Two patients had extended PFS of at least 51 and
40 months (Table 1). This study also underscored the signif-
icant feasibility challenges in DC vaccine administration, as
rapid disease progression precluded vaccine administration
in four patients. Trials investigating alternative splice vari-
ant-targeted peptide-pulsed DCs (NCT06342908) and the
CMV pp65-LAMP mRNA-pulsed DCs (NCT03688178)
are ongoing.

Despite encouraging safety profiles and signals of poten-
tial efficacy in select patients, DC vaccines face significant
challenges in pHGG, including lengthy manufacturing
times that can delay treatment in rapidly progressing dis-
ease, variability in immune responsiveness, and the pro-
found immunosuppressive tumor microenvironment that
may limit durable antitumor activity. Additionally, limited
patient numbers in early-phase trials limit definitive conclu-
sions regarding survival benefit. Future studies are critical
to refine antigen selection, optimize timing of vaccine deliv-
ery, and explore synergistic combinations with other immu-
nomodulatory or standard therapies, including radiation.

mRNA-based vaccines

Messenger RNA (mRNA) vaccines represent another thera-
peutic approach utilizing the patient’s adaptive immune
system to target malignant cells. Unlike peptide vaccines,
delivery of mRNA sequences encoding TAAs allows APCs
to translate the full-length antigen and present multiple epi-
topes on MHC molecules without restriction to only cer-
tain HLA types [54]. This allows for a more robust immune
response by stimulating cytotoxic CD8" T lymphocytes and
helper CD4* T-cells through antigen presentation from both
MHC-I and MHC-II molecules. Ex vivo loading of patient-
derived DCs with mRNA encoding glioma antigens allows
APCs to prime naive T-cells upon reinfusion. Alternatively,
direct injection of lipid nanoparticle (LNP)-encapsulated
mRNA enables in situ translation and immune activation
without ex vivo processing [55]. These strategies enable the
immune system to mount a multi-epitope response with low
rates of immune rejection and no risk of genome integra-
tion, offering unique advantages compared to other vaccine
modalities.

Several TAA have been identified as possible targets for
mRNA-based vaccines for gliomas including TP53, C3,
TCF12, and IDH-1 [29, 32]. A comprehensive analysis of

@ Springer

glioma datasets from The Cancer Genome Atlas (TCGA)
and the Chinese Glioma Genome Atlas (CGGA) identi-
fied these antigens as overexpressed and correlated with
increased infiltration of APCs, suggesting their potential
utility as targets in mRNA-based vaccines. Studies have also
noted the expression of immunosuppressive molecules such
as PD-L1 and TIM-3 in pHGGs, supporting the rationale for
combining vaccines with immune checkpoint blockade to
enhance antitumor response [56, 57]. However, checkpoint
inhibition alone has demonstrated only limited clinical suc-
cess to date in pHGG, underscoring that any potential syn-
ergistic approach with vaccine therapies will require careful
clinical validation.

Clinical translation of mRNA vaccines specifically for
pediatric gliomas remains in its infancy, with no completed
trials reported in children to date. However, adult trials tar-
geting similar antigens, including early-phase studies using
mRNA-loaded DC vaccines and direct LNP-encapsulated
mRNA delivery, have demonstrated safety and immunoge-
nicity, laying the groundwork for currently ongoing pedi-
atric trials [58]. Ongoing identification of glioma antigens
and evolving understanding of the unique pediatric tumor
immune microenvironment are critical for the success of
this vaccine modality. Trials investigating the CVGBM
mRNA vaccine (NCT05938387) and RNA-lipid Particle
(RNA-LP) vaccines (NCT04573140) are ongoing.

Neoantigen-personalized vaccines

Neoantigen-personalized vaccines represent a unique,
highly targeted approach for immunotherapy in pHGG,
driven by the unique genomic landscape of individual
tumors. Unlike shared TAAs central to other glioma vac-
cine therapies, neoantigens arise from tumor-specific muta-
tions, presenting entirely novel peptide sequences not found
in healthy tissues that are specific to each individual patient
[34]. In pediatric medulloblastoma, for instance, Rivero-
Hinojosa et al. show aberrant splice junctions as significant
neoantigen sources through proteogenomic analysis [59].
While pediatric trials utilizing neoantigen-personalized
vaccines have not been conducted, early-phase clinical tri-
als in adult glioblastoma have shown promising results. The
personalized neoantigen vaccine “NeoVax”, which com-
bines patient-specific neoantigens identified from tumor
sampling, has successfully generated immune responses
characterized by an increase in interferon-gamma (IFN-y)
producing T-cells and intratumoral T-cell infiltration [60].
In a cohort of 173 adult patients with IDH-wildtype glio-
blastoma, personalized multi-peptide neoantigen vaccines
were feasible to manufacture (median time from tissue
acquisition to vaccine administration was 16 weeks), well
tolerated with only grade 1 or 2 adverse events, and induced
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durable T-cell responses in 77 of 97 patients tested [47].
Importantly, patients who were found to mount an effective
immune response against multiple vaccinated neoantigens
were associated with prolonged survival compared with
low- or non-responders. These data provide important early
evidence for the potential of neoantigen vaccines, albeit
exclusively in an adult population. Although data specific
to pHGG are limited at this time, the biological rationale
and encouraging early-phase adult studies highlight the
translational promise of neoantigen vaccines for pediatric
populations, especially given the significant heterogeneity
in pHGG mutations.

Despite the considerable potential, several challenges
remain for neoantigen vaccine implementation. pHGGs
typically possess fewer somatic mutations compared to
adult tumors, which may complicate neoantigen identifica-
tion and limit target availability [6, 13—15]. Furthermore,
the tumor microenvironment in pediatric gliomas often
demonstrates pronounced immunosuppression, reducing
T-cell infiltration and activity, potentially undermining vac-
cine efficacy [13, 36]. Additionally, access to tissue samples
for sequencing and neoantigen identification can be espe-
cially challenging in certain pHGG, depending on anatomi-
cal location and surgical accessibility. The requirement for
patient-specific manufacturing also introduces logistical
complexity, substantial costs, and potential delays that may
be incompatible with the rapid progression of HGG. Given
the rapid expansion of these tumor populations, the potential
for intratumoral heterogeneity may also further complicate
vaccine design [56]. Despite these physiologic and logisti-
cal challenges, the incorporation of combination approaches
such as neoantigen vaccines alongside immune checkpoint
inhibitors may enhance antitumor efficacy.

Ethical, regulatory, manufacturing, and
translational challenges

Developing vaccines for pHGG presents a host of chal-
lenges. In this vulnerable population, characterized by an
aggressive disease course and limited treatment options,
maintaining a favorable risk-benefit balance is essential.
Protecting patient welfare requires thoughtful, transparent
communication between providers and families. Additional
services to support the patient and family should be involved
early, including social work, child life specialists, psychia-
try, spiritual or cultural support, and palliative care. In the
adolescent population, assessing decision-making capacity
and navigating informed consent add further complexity,
requiring a sensitive and individualized approach.
Regulatory oversight plays a critical role, mandating
rigorous safety evaluations and continuous monitoring of

vaccine trials by institutional review boards and ethics com-
mittees. Manufacturing challenges are substantial, particu-
larly for personalized neoantigen vaccines, which require
tumor sequencing, epitope selection, strict quality control,
sterile production protocols, and efficient logistical coordi-
nation. In practice, this process ranges from 10 to 16 weeks
from tissue acquisition to vaccine availability, a timeline
that may be incompatible with the rapid clinical progres-
sion in many pHGG patients. Given this narrow therapeutic
window, delays in manufacturing or trial enrollment may
render patients ineligible for treatment due to worsening
neurologic decline or tumor progression [26].

Logistical and financial barriers also further limit clinical
translation. Vaccine platforms remain primarily accessible
only within clinical trials, and reimbursement for investi-
gational or personalized vaccines outside of a trial setting is
often unclear and logistically challenging to navigate. These
constraints limit equitable access and disproportionately
restrict availability to patients treated at large academic cen-
ters with specialized infrastructure to host these clinical tri-
als. Translational barriers also include the limited predictive
value of preclinical models, a lack of validated biomarkers
to monitor immune response and tumor progression, and
the inherent difficulties in designing and executing clinical
trials for a rare disease with a small and often rapidly dete-
riorating patient population. Overcoming these multifaceted
challenges is essential to ensure the safe, timely, and effec-
tive advancement of vaccine-based therapies for children
with high-grade gliomas.

Conclusions & future directions

Despite encouraging early-phase data, significant knowl-
edge gaps remain in understanding how vaccine therapies
can be optimized for pHGG. Key uncertainties include the
most effective antigen targets for broad or personalized
application, the optimal timing and sequencing of vaccine
administration relative to standard therapies, and the impact
of immune-modulating factors such as steroid use on vac-
cine efficacy. Moreover, the pediatric-specific immune
response to tumor vaccines remains poorly characterized,
particularly in the setting of CNS relative immune privilege
and glioma-mediated suppression. The lack of validated
biomarkers to predict or monitor treatment response further
complicates trial design and clinical implementation.

An additional priority for future investigation is defin-
ing the optimal clinical windows for vaccine administra-
tion as pHGG treatment continues to evolve. Vaccine-based
therapies may be the most effective during periods of mini-
mal disease burden, such as following maximal safe surgi-
cal resection or in the post-radiation setting, when tumor
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antigen release and blood-brain barrier disruption may
enhance immune priming. In contrast, concurrent admin-
istration during upfront chemoradiation may be limited by
treatment-induced lymphopenia and the frequent require-
ment for corticosteroids. The recent approval of ONC201
for H3.3K27M-mutant DMG may also introduce a new
therapeutic axis and expand the window of opportunity to
maximize response to vaccine therapies by enabling disease
stabilization with a favorable toxicity profile and reduced
steroid dependence, thereby creating more favorable condi-
tions for vaccine integration.

Future research must prioritize the development of inte-
grated pipelines to rapidly identify high-quality tumor anti-
gens in individual patients given the rapid progression of
pHGG. Studies exploring combination therapies, such as
vaccines with radiation or immune checkpoint inhibitors,
are essential to enhance immunogenicity and overcome
tumor-induced suppression or intratumoral heterogeneity.
Pediatric-focused clinical trials with biomarker-correlated
endpoints and immune profiling will be critical to refine
dosing, timing, and patient inclusion criteria. Advancements
in delivery platforms, such as focused ultrasound-assisted
delivery across the BBB, may further increase therapeutic
penetration and efficacy.

Vaccine-based immunotherapy represents a promising
yet still nascent strategy in the treatment of pediatric high-
grade gliomas. While initial trials have demonstrated safety
and immunogenic potential, clinical efficacy has yet to be
conclusively proven. Addressing the biological, logistical,
and ethical challenges unique to this population will require
sustained multidisciplinary collaboration across institutions.
With continued innovation and rigorous clinical validation,
vaccine therapies may one day complement or even trans-
form the therapeutic landscape for children facing these
devastating tumors.
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