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ABSTRACT

Objective: Glioma recurrence severely impacts patient prognosis, with current treatments showing limited efficacy. Traditional
methods struggle to analyze recurrence mechanisms due to challenges in assessing tumor heterogeneity, spatial dynamics, and
gene networks. Single-cell combined spatial transcriptomics (ST) offers innovative solutions.

Methods: We analyzed glioma mRNA data from TCGA and single-cell and ST data from GEO. Following quality control, dimen-
sionality reduction, clustering, and cell annotation of single-cell sequencing data, we identified cell types exhibiting significantly
aberrant distributions between primary and recurrent samples by analyzing the deviation degree of Ro/e values. Fibroblasts
demonstrating the greatest intergroup differences were subsequently selected as the key cellular population for further inves-
tigation. Key differentially expressed genes (DEGs) were identified via random survival forest analysis. Drug sensitivity was
assessed using GDSC. Deconvolution algorithms mapped cellular spatial distribution, while PROGENy quantified pathway ac-
tivity. MISTy modeling revealed cell-cell interactions.

Results: Fibroblasts were the primary recurrence-associated subpopulation, with marker genes enriched in extracellular matrix
and adhesion pathways. AEBP1, ZNF708, and TSHZ2 were identified as key genes: AEBP1/TSHZ2 correlated with poor progno-
sis, while ZNF708 showed an inverse trend. These genes were linked to chemosensitivity (Irinotecan, Carmustine, Vincristine,
and Cisplatin). Recurrent tumors exhibited increased plasma cell infiltration, with key genes regulating IL-17, Notch, and Toll-
like receptor pathways. Spatial analysis highlighted oligodendrocyte-astrocyte interactions in the tumor microenvironment.
Interpretation: Fibroblasts drive glioma recurrence, with AEBP1, ZNF708, and TSHZ2 predicting recurrence and chemore-
sistance. These genes promote immune suppression (via plasma cells) and activate recurrence pathways. Oligodendrocyte-
astrocyte interactions shape the recurrent microenvironment, suggesting new therapeutic targets.
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1 | Introduction

Gliomas represent the most prevalent type of primary brain
tumors, making up 81% of malignancies in the central nervous
system (CNS) [1]. Due to the highly aggressive nature of glio-
mas, achieving complete surgical removal is often challenging,
contributing to subsequent patient relapse [2]. In particular,
high-grade glioma (HGG) patients exhibit recurrence rates as
high as 90% [3]. Even in cases of low-grade gliomas (LGG), ap-
proximately 60% will progress to HGG upon recurrence [4]. The
elevated recurrence rate of gliomas is a critical factor impacting
patient prognosis. Currently, there is no standardized treatment
protocol or consensus for recurrent gliomas. A combination of
surgery, radiotherapy, chemotherapy, TTFields, and targeted
therapy is generally regarded as the most appropriate treatment
approach [5]. These therapies are also constrained by factors
such as the patient's functional status, age, extent of tumor resec-
tion, and drug resistance, resulting in a median overall survival
of only 6-15.5months following recurrence [6-9]. Therefore, it
is imperative to develop new therapeutic strategies to enhance
patient outcomes.

The evolution of bioinformatics has been instrumental in ad-
vancing cancer research, enabling the systematic discovery
of molecular biomarkers and therapeutic targets from high-
throughput genomic data. Numerous studies have success-
fully leveraged bulk transcriptomic and epigenomic profiles
to identify clinically relevant signatures, as exemplified by
the identification of ABCG1 hyper-methylation as a diagnostic
biomarker in non-small cell lung cancer and the comprehen-
sive bioinformatics analysis implicating GPSM family mem-
bers in breast cancer pathogenesis [10, 11]. The underlying
molecular and genetic basis of gliomas has evolved in recent
years, opening up possibilities not only for early diagnosis of
the disease but also for new strategies for individualized treat-
ment. Key prognostic markers include IDH mutation status,
1p/19q codeletion, MGMT promoter methylation, as well as
TP53 and EGFR alterations [12-14]. At present, the research
on gene changes and survival prognosis of glioma is gradually
deepening, but the exploration of gene expression of glioma
recurrence is still unclear. Establishing a clear correlation
between genetic alterations and glioma recurrence requires
more research to explore.

The introduction of single-cell RNA sequencing (scRNA-seq) has
made it possible to examine the heterogeneity of tumor cells and
to recognize different cellular subpopulations and their func-
tional conditions at the level of individual cells [15]. However,
the execution of single-cell sequencing necessitates the dissoci-
ation of cells from their tissue context, resulting in the loss of
spatial information regarding cellular localization. Spatial tran-
scriptomics (ST) represents a technique that integrates imaging,
biomarker analysis, sequencing, and bioinformatics, making it
an ideal approach for elucidating the heterogeneity and spatial
distribution of cancer cells within tissues [16]. The combination
of scRNA-seq and ST allows for the simultaneous acquisition of
single-cell resolution and spatial positional data, thereby pro-
viding a more comprehensive perspective for investigating the
mechanisms underlying the occurrence or development of a
tumor [17]. By systematically integrating scRNA-seq and ST, Liu

et al. uncovered that MDK-NCL-mediated immunosuppression
drives endometrial carcinoma progression, proposing pathway
blockade as a therapeutic strategy [18]. He et al. utilized ScRNA-
seq and ST to investigate the role of oxidative stress response
genes in glioma oligodendrocyte progenitor cells (OPCs) [19].
Despite significant technological progress in other types of can-
cer, there is limited understanding of how scRNA-seq combined
with ST can be used to investigate the molecular mechanisms
and genetic factors underlying glioma recurrence.

Consequently, the objective of this research was to develop a
scRNA-seq integrated ST in order to investigate the molecular
mechanisms underlying glioma recurrence.

2 | Materials and Methods
2.1 | Data Download

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) represents the most extensive repository of cancer-
related genetic information [20]. For this study, we downloaded
the original mRNA expression data for glioma, gathering a total
of 170 samples, which include 157 from the primary tumor group
and 13 from the recurrent tumor group.

The GEO database (https://www.ncbi.nlm.nih.gov/geo/info/
datasets.html) is a comprehensive gene expression omnibus es-
tablished and overseen by the National Center for Biotechnology
Information (NCBI) in the United States [21]. We can access
the NCBI GEO public database to download the GSE174554
single-cell data file, which comprises a total of 73 samples with
complete single-cell expression profiles, including 31 primary
tumor samples and 42 recurrent tumor samples. Additionally,
the GSE270355 spatial transcriptome data file is available for
download, containing complete spatial transcriptome expres-
sion profiles from four glioma samples for spatial transcriptome
analysis.

2.2 | Quality Control

The expression profile was initially imported utilizing the
Seurat package, which facilitated the filtering of cells based on
several criteria, including the total number of unique molecu-
lar identifiers (UMISs) per cell, the number of expressed genes,
and the percentage of mitochondrial and ribosomal reads per
cell [22]. Outliers were identified as three median absolute devi-
ations (MAD) from the median. The filtering formula employed
was as follows: (nFeature_ RNA>200 & percent.mt < me-
dian+3MAD & nFeature_RNA < median+3MAD & nCount_
RNA < median+3MAD & percent.ribo < median+3MAD).
In this context, nFeature_ RNA denotes the number of genes,
nCount_RNA indicates the total number of UMIs within the
cell, percent.mt refers to the proportion of mitochondrial reads,
and percent.ribo signifies the proportion of ribosomal reads. It is
widely acknowledged that cells exhibiting excessively high per-
centages of mitochondrial and ribosomal reads are indicative of
compromised quality, potentially approaching apoptosis or ex-
isting as cellular debris.
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2.3 | Data Normalization

Initially, the dataset underwent normalization through the ap-
plication of the NormalizeData function. Following this, cell
cycle scores were computed utilizing the CellCycleScoring
method, and highly variable genes were identified via the
FindVariableFeatures function. Subsequently, the data were
scaled using the ScaleData function to reduce the impact of
mitochondrial genes, ribosomal genes, and cell cycle effects
on subsequent analyses. Linear dimensionality reduction was
then executed on the expression matrix through the RunPCA
function, with principal components selected for further ex-
amination. Harmony is an algorithm specifically designed for
the integration of single-cell RNA sequencing data. To address
batch effects, the Harmony algorithm was employed, which iter-
atively clusters similar cells from different batches within PCA
space while maintaining the diversity of batches within each
cluster [23, 24]. Nonlinear dimensionality reduction was sub-
sequently performed using Uniform Manifold Approximation
and Projection (UMAP) through the RunUMAP function. Cell
neighborhoods were delineated using the FindNeighbors func-
tion, and cells were categorized into distinct clusters via the
FindClusters function. Finally, cell types and their correspond-
ing marker genes present in the relevant tissues were identified
by consulting the CellMarker database and relevant literature as
the primary approach, supplemented by automatic annotation
through the SingleR software for cell classification.

2.4 | Random Survival Forest

The Random Survival Forest is a machine learning algorithm
utilized for the analysis of survival data [25]. In this study, the
random survival forest algorithm was implemented using the
randomForestSRC package to screen the feature genes and rank
the importance of prognosis-related genes. Prior to constructing
the random survival forest model, all candidate differentially ex-
pressed genes (DEGs) were subjected to univariate Cox propor-
tional hazards regression analysis (with a significance threshold
of p<0.05). This step substantially reduced the dimensionality
of the input variables, thereby mitigating the risk of overfitting
from the outset. A total of 1000 iterations were then performed
in the Monte Carlo simulation (nrep=1000). To identify the
most reliable predictive genes, we applied a relatively conser-
vative threshold (relative importance >0.2) to select the final
key genes.

2.5 | Drug Sensitivity Analysis

Utilizing the most extensive pharmacogenomics database, the
GDSC Cancer Drug Sensitivity Genomics Database (accessible
at https://www.cancerrxgene.org/), we applied the R package
“pRRophetic” to predict the chemotherapy sensitivity of indi-
vidual tumor samples. The IC50 values for each chemotherapy
agent were calculated through regression analysis, with the
GDSC training set subjected to 10 cross-validation iterations to
evaluate the accuracy of regression and prediction. All param-
eters were maintained at their default settings, including the
“combat” function to mitigate batch effects and the averaging of
repeated gene expression data.

2.6 | Immune Infiltration

The CIBERSORT methodology represents a significant an-
alytical framework utilized for the evaluation of immune cell
types within various microenvironments [26]. This approach
is grounded in the principles of support vector regression and
conducts deconvolution analysis on the expression matrix of
immune cell subtypes. It encompasses 547 biomarkers and dif-
ferentiates 22 distinct human immune cell phenotypes, which
include T cells, B cells, plasma cells, and various myeloid cell
subsets. In this study, the CIBERSORT algorithm was employed
to analyze the sample data, enabling the inference of the relative
proportions of the 22 immune infiltrating cell types and facil-
itating correlation analyses between gene expression and im-
mune cell composition.

To quantify the infiltration levels of immune and stromal cells
in tumor samples, we applied the Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) algorithm. Using the filterCommonGenes
function from the estimate package, we filtered the gene expres-
sion matrix and subsequently applied the estimateScore function
to calculate immune scores, stromal scores, and ESTIMATE
combined scores for each tumor sample. This algorithm infers
the cellular composition of tumor tissues at the overall transcrip-
tome level by analyzing the expression enrichment of predefined
immune- and stromal-related gene signatures. The resulting
scores were used in subsequent analyses to explore associations
between the tumor microenvironment and clinical phenotypes.

2.7 | GSEA Analysis

Based on the expression levels of key genes within the samples,
the samples were classified into high and low expression groups.
Following this classification, the differences in signaling path-
ways between the two groups were examined utilizing Gene Set
Enrichment Analysis (GSEA). The background gene set utilized
for this analysis was the version 7.0 annotation gene set obtained
from the MsigDB database, which served as the annotation gene
set for the subtype pathway. A differential expression analysis
of pathways between the distinct groups was conducted, and
the significantly enriched gene sets (with an adjusted p value
of less than 0.05) were ranked according to their consistency
scores. GSEA is commonly employed to explore the complex re-
lationship between disease classification and biological signifi-
cance [27].

2.8 | GSVA Analysis

Gene set variation analysis (GSVA) is a non-parametric, unsu-
pervised method for evaluating the enrichment of transcriptome
gene sets [28]. This approach converts alterations at the gene
level into modifications at the pathway level by methodically
scoring the relevant gene sets, thereby clarifying the biological
functions linked to the samples being analyzed. In this study,
gene sets will be downloaded from the Molecular signatures
database, and the GSVA algorithm will be employed to system-
atically score each gene set, facilitating an assessment of the po-
tential changes in biological functions across different samples.
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2.9 | Spatial Domain Identification

The raw UMI count matrix, imaging data, image coordinates,
and scaling factors were imported into R utilizing the Seurat
package. The raw UMI counts were normalized through
regularized negative binomial regression employing the
SCTransform method. Linear dimensionality reduction was
performed on the top 3000 genes that displayed the most pro-
nounced variations in expression levels, which were classified
as highly variable genes, through principal component anal-
ysis (PCA). Following this, nonlinear dimensionality reduc-
tion was executed using the RunUMAP function. Clustering
was ultimately accomplished through the application of the
FindClusters function.

2.10 | RCTD Deconvolution

Robust cell-type decomposition (RCTD) is a supervised learn-
ing method that decomposes RNA sequencing mixtures into
individual cell types, enabling the assignment of cell types to
spatial transcriptomic pixels [29]. Its maximum likelihood
model is particularly robust in handling technical differences
between platforms, making it highly suitable for this task [30].
In particular, we use annotated scRNA-seq data to define cell
type-specific profiles of cell types expected to be present in spa-
tial transcriptomic data. A related challenge of supervised cell
type learning is the phenomenon known as the platform effect,
which refers to the influence of technology-dependent library
preparation on the capture rate of individual genes between
sequencing platforms. The research indicates that neglecting
platform effects may hinder the success of supervised method-
ologies, as systematic technical variability tends to overshadow
the pertinent biological signal. However, RCTD effectively mit-
igates platform-specific effects and is applicable for deconvolu-
tion analysis of spatial transcriptomes across various platforms
[31-33]. RCTD demonstrates a significant level of accuracy in
identifying the spatial localization of cell types within both sim-
ulated and actual spatial transcriptome datasets.

2.11 | Spatial Cell Interactions

Multiview Intercellular SpaTial modeling framework (MISTy)
facilitates a deeper understanding of marker interactions by
analyzing intracellular and intercellular relationships [34]. It
facilitates the development of models that characterize various
spatial contexts, particularly concerning the relationships iden-
tified in marker expressions, including intracellular and exo-
crine regulation. For each relationship type, MISTy incorporates
a model component referred to as a “view.” These views can
encapsulate functional relationships, such as pathway activity
and crosstalk, relationships specific to particular cell types, or
interactions among different anatomical regions. Subsequently,
the contributions of each view to the overall expression of each
marker are analyzed. The assessed contributions highlight the
correlations among potential sources of interactions arising
from diverse spatial contexts and are estimated through view-
specific models. This method has been applied in colorectal can-
cer, where MISTy confirmed a particular reliance of NUhighepi
on fibroblasts [35].

2.12 | Statistical Analysis

All statistical analyses were conducted using R software (ver-
sion 4.3.0), with a significance threshold set at p <0.05.

3 | Results
3.1 | Quality Control

Following comprehensive quality assessment across multi-
ple samples, cells with fewer than 200 detected genes were
filtered out, retaining 136,677 high-quality cells for down-
stream analysis (Figure 1A). We identified 2000 highly variable
genes (Figure 1B) and subsequently performed data normal-
ization, scaling, PCA, and batch correction using Harmony
(Figure 1C-E). By comparing the clustering patterns of cells
based on their sample origins before and after integration, we
confirmed that Harmony effectively mitigates technical varia-
tions while preserving biological differences.

3.2 | Data Standardization and Cell Annotation

Cell populations were annotated using established markers, with
12 distinct subclusters ultimately classified into six major cell
types: oligodendrocyte, astrocyte, myeloid, neuron, fibroblast,
and T cell (Figure 2B). We employed bubble and proportional
bar charts to visually represent the established markers for these
six cell types (Figure 2C,D). Subsequently, we performed an
analysis of subpopulation differences and enrichment, utilizing
ClusterGVis to generate a heat map and enrichment annotations
reflecting the average expression levels of the cell subpopula-
tions (Figure 3A). The results revealed that the DEGs associated
with Fibroblasts were significantly enriched in pathways per-
taining to extracellular matrix organization, extracellular struc-
ture organization, and cell-substrate adhesion, among others.

3.3 | Observed/Expected Ratio (Ro/e) Algorithm
Calculates the Specificity of Cell Distribution

The expected value for single cell grouping was computed using
the epitools: expected function, and Ro/e was subsequently
determined. The primary advantage of the Ro/e method is its
capacity to account for variations in total cell numbers across
samples, thereby enabling direct identification of relative en-
richment or depletion patterns of specific cell types. Deviations
from 1 (where Ro/e>1 indicates enrichment and Ro/e<1 in-
dicates depletion) directly demonstrate distribution specificity.
The Ro/e method has been widely adopted in recent spatial
biology research to evaluate cell-type colocalization and dis-
tribution patterns, as evidenced by its application in studies of
cancers such as glioblastoma and oral squamous cell carcinoma
[36, 37]. The correlation of expected values between primary
tumors and recurrent tumors within single cells was visual-
ized using ggplot2 (Figure 3B), highlighting Fibroblast as the
predominant cell type. The FindAllmarker function was used
to find the DEGs of each cell subpopulation, with the screen-
ing conditions of avg_log2FC>1 and p_val_adj<0.05. The
DEGs for each cell subpopulation were illustrated using the

4
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FIGURE 1 | Preprocessing of single-cell data. (A) Quality control visualization of single-cell RNA sequencing data. Each subplot displays the
number of genes, the number of Unique Molecular Identifier detected per cell (UMI count), the proportion of mitochondrial genes (%MT), and the
proportion of ribosomal genes (%Ribo). The x-axis represents the samples, and the y-axis represents the corresponding metric values. (B) Volcano
plot of differentially expressed genes. The x-axis represents the log fold change in gene expression between samples, and the y-axis represents the sig-
nificance of differential expression (—logl0(p-value)). Red dots indicate significantly differentially expressed genes (FDR <0.05), with labeled genes

being biologically relevant candidates. (C) ElbowPlot of principal component analysis (PCA) results. The x-axis represents the number of principal

components, and the y-axis represents the proportion of variance contribution of each principal component. This plot is used to select the number of

significant principal components. (D) Visualization of PCA results. A two-dimensional scatter plot of the first two principal components (PC1 and

PC2). Each point represents a cell, with different colors indicating different cell clusters. (E) Revisualization of double PCA results after adjustment.

The colors and point distributions are updated to explore the correction effects of potential batch effects or other technical biases.

markerVolcano function, with the top five marker genes exhibit-
ing the greatest fold change indicated (Figure 3C). The cell clus-
ter under scrutiny demonstrated consistently high expression of
classical fibroblast-associated extracellular matrix genes, such
as COL1A1/2, COL3A1, POSTN, and FN1, a profile strongly in-
dicative of a fibroblastic identity. To further rule out potential
misannotation with other cell types, we systematically evalu-
ated the expression of established exclusion markers: character-
istic pericyte markers (PDGFRB, RGS5) and glioma cell markers
(SOX2, OLIG2) showed no significant expression. Based on this
complementary molecular evidence, we are confident in the re-
liability of annotating this population as fibroblasts.

3.4 | Random Survival Forest

To enhance the identification of pivotal genes influencing gli-
oma, we conducted a random survival forest analysis on the
DEGs associated with fibroblasts. Internal validation per-
formed with the out-of-bag (OOB) data from 1000 bootstrap
replicates exhibited a convergent error rate curve, which signi-
fies the model's good stability. We selected genes exhibiting a
relative importance greater than 0.2 as the final markers and
illustrated the hierarchical significance of the seven identified
genes (Figure 4A). Moreover, we conducted a survival analysis
on these seven genes and discovered that the survival associated
with the AEBP1, ZNF708, and TSHZ2 genes was significant
(Figure 4B-H).

3.5 | Analysis of Chemotherapy Drug Sensitivity

Early-stage gliomas are effectively treated through a combina-
tion of surgical intervention and chemotherapy. The present
study utilizes drug sensitivity data from the GDSC database.
We employed the R package “pRRophetic” to predict the che-
motherapy sensitivity of individual tumor samples and to fur-
ther examine the responsiveness of key genes to commonly
utilized chemotherapy agents. Based on the drug sensitivity
analysis, AEBP1 showed a significant correlation specifically
with vincristine sensitivity, while ZNF708 exhibited highly sig-
nificant associations with sensitivity to irinotecan, carmustine,
and vincristine (Figure 5A,B); Similarly, TSHZ2 demonstrated
a statistically significant association with cisplatin sensitivity
(Figure 5C). In addition, we performed drug sensitivity analysis
on several chemotherapeutic agents not routinely used in glioma
to assess their potential therapeutic relevance (Figure S1A-C).
These results highlight the potential of these genes to serve as

selective predictors of response to specific chemotherapeutic
agents.

3.6 | Immune Infiltration

The microenvironment is primarily constituted of fibroblasts,
immune cells, extracellular matrix components, various growth
factors, inflammatory mediators, as well as distinct physical
and chemical properties. Our research illustrates the distribu-
tion of immune infiltration levels and the correlations among
immune cell types across different contexts (Figure 6A,B). The
plasma cell levels in samples from the recurrent tumor group
were notably elevated compared to those in the primary tumor
group (Figure 6C). In our investigation of the association be-
tween pivotal genes and immune cell populations, we observed
that AEBP1 exhibited a significant positive correlation with
resting CD4 memory T cells, resting NK cells, and neutrophils.
Conversely, it demonstrated a significant negative correlation
with activated NK cells and M2 macrophages. Additionally,
ZNF708 was found to have a significant negative correlation
with CD8 T cells, activated CD4 memory T cells, and resting
dendritic cells. Furthermore, TSHZ2 showed a significant posi-
tive correlation with naive B cells (Figure 6D).

Based on the ESTIMATE combined scores, we performed differ-
ential analysis between primary and recurrent tumor samples.
The results showed that the recurrent group had significantly
higher scores compared to the primary group, suggesting an in-
creased overall infiltration of non-tumor cellular components
and/or greater heterogeneity in the tumor microenvironment of
recurrent tumors (Figure S2).

3.7 | GSEA Analysis

Subsequently, we conducted an investigation into the specific
signaling pathways associated with critical genes and examined
the potential molecular mechanisms through which these genes
influence disease progression. The results of the GSEA revealed
that AEBP1 was significantly enriched in several signaling
pathways, including the IL-17 signaling pathway, the Cytosolic
DNA-sensing pathway, and the B cell receptor signaling path-
way (Figure 7A), suggesting its potential role in modulating in-
flammatory responses and genomic instability within the tumor
microenvironment. ZNF708 has been found to be significantly
associated with various signaling pathways, including the
Notch signaling pathway, the Fanconi anemia pathway, and the
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FIGURE2 | Cell annotation. (A) UMAP plot showing cell clustering results (based on RNA expression, resolution =0.2). Each point represents a
cell, with colors distinguishing different clusters. The x-axis and y-axis represent UM AP coordinates, indicating cellular heterogeneity. (B) UMAP
plot showing cell type annotation results. Based on clustering results, cells are further annotated into different cell types, such as Neuron, Fibroblast,
and T cell. Different colors and labels indicate the distribution of different cell types. (C) Bubble plot showing the expression patterns of marker genes
across different cell types. The x-axis represents genes, and the y-axis represents cell types. The size of the bubbles indicates the proportion of cells
expressing the gene in the corresponding cell type (% expressed), and the color represents the average expression level (red for high expression, blue

for low expression). (D) Proportional bar charts illustrating the percentage distribution of the six cell types.

Longevity regulating pathway (Figure 7B), implicating this gene
in the maintenance of cancer stem cells and DNA damage re-
sponse processes. TSHZ2 is enriched in signaling pathways such
as the Toll-like receptor signaling pathway, IL-17 signaling path-
way, and Hedgehog signaling pathway (Figure 7C), indicating
its involvement in both immune regulation and the activation of
developmental pathways.

3.8 | GSVA Analysis

GSVA analysis revealed that AEBP1 exhibited significant
enrichment in signaling pathways such as INTERFERON_
ALPHA_RESPONSE and IL2_STAT5_SIGNALING
(Figure 8A). ZNF708 was enriched in signaling pathways such
as G2ZM_CHECKPOINT and UV_RESPONSE_DN (Figure 8B).
Furthermore, TSHZ2 was found to be enriched in pathways asso-
ciated with EPITHELIAL_MESENCHYMAL_TRANSITION
and IL6_JAK_STAT3_SIGNALING (Figure 8C).

These findings indicate that these pivotal genes may influence
tumor progression through their involvement in these specific
signaling pathways.

We have now systematically ranked all pathway activity scores
obtained through GSVA calculations, as detailed in Tables S1-
S3. In these tables, pathways are categorized into three groups:
Group 1 represents significantly downregulated pathways,
Group 2 indicates pathways with no significant change, and
Group 3 corresponds to significantly upregulated pathways.
In brief, a GSVA score >0 suggests that high expression of the
gene is positively correlated with the activity of a given pathway,
whereas a score <0 indicates a negative correlation between
high gene expression and pathway activity.

3.9 | Identification of Spatial Domains and RCTD
Deconvolution

We sequentially analyzed four spatial transcriptome sam-
ples and assessed the distribution of UMI counts across these
samples (Figure 9A). The data underwent a series of processes
including standardization, normalization, PCA for linear di-
mension reduction, UMAP for nonlinear dimension reduction,
and clustering with FindClusters, resulting in the identifica-
tion of seven subgroups from the four samples (Figure 9B). We
used the software package spacexr to combine single-cell data
to perform deconvolution analysis on the spatial transcrip-
tome to determine the cell type with the largest proportion
in each spot (Figure 9C,D). ST data were visualized using the
SpatialFeaturePlot function from the Seurat package to generate

spatial feature maps illustrating the distribution of various cell
types across tissue sections (Figure S3). To verify the accuracy
of deconvolution, we used the FindAllmarkers function to
screen the key genes in each category (Figure 9E). The param-
eters applied for this screening included: logfc.threshold =0,
min.pct=0.1, and only.pos =F.

3.10 | Pathway Activity Analysis and Spatial Cell
Interactions

PROGENYy is adept at generating core gene sets for various biolog-
ical pathways and assessing gene contribution weights, thereby
improving the accuracy and efficacy of pathway activity evalua-
tions. Furthermore, PROGENY is capable of identifying pathway
nodes that exhibit significant alterations in lesions, which en-
hances the reliability of outcomes in biological research.

This method, as utilized in a meningioma single-cell transcrip-
tomics study, is well-established for pathway activity evalua-
tions [38]. In our study, we employed PROGENY to assess the
pathway activity of distinct cell subtypes within the spatial tran-
scriptome, subsequently visualizing the results in a heat map
(Figure 10A).

The findings indicated that the MesLin cell subtype exhibited
elevated activity within the TGFb pathway. Additionally, we
utilized MISTy to analyze both intracellular and intercellular
relationships, thereby facilitating a more comprehensive under-
standing of marker interactions. By conducting cell interaction
analyses on the annotated cell identities post-deconvolution,
we generated an intracellular interaction heat map and net-
work diagram (Figure 10B,C). The analysis revealed that
Oligodendrocyte and Astrocyte cells demonstrated heightened
interaction levels. Lastly, we examined the expression of key
genes within the spatial transcriptome, highlighting the ex-
pression abundance of AEBP1, ZNF708, and TSHZ2 across the
four samples (Figure 10D). The results indicated that AEBP1
was predominantly expressed in GSM8340237, ZNF708 in
GSM8340238, and TSHZ2 in GSM8340236.

4 | Discussion

Our study integrates scRNA-seq and ST to dissect mechanisms
underlying glioma recurrence, providing a spatially resolved
perspective that surpasses the limitations of prior single-cell-
only analyses.

Unlike conventional scRNA-seq which loses spatial con-
text during tissue dissociation, ST preserves the native tissue
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from —2 (blue, low expression) to 2 (red, high expression). The heatmap also includes annotations of biological processes related to the genes. (B)
Specificity analysis of cell type distribution in primary and recurrent glioma samples. The ratio of observed to expected values (Ro/e) for each cell
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FIGURE 4 | Random survival forest for key gene screening. (A) Left panel shows the trend of model error rate as the number of decision trees

increases. The error rate stabilizes around 0.42 when the number of trees reaches approximately 800, indicating good model convergence. The right

panel shows the variable relative importance of key genes, with AEBP1 (importance ~1.0) and TSHZ2 (x0.8) contributing the most to survival pre-

diction. (B-H) Survival analysis grouped by median gene expression. Red lines represent the high-expression group, and blue lines represent the

low-expression group. Significant differences in prognosis are observed for patients with different expression levels of AEBP1, ZNF708, and TSHZ2.

organization while simultaneously capturing transcriptomic
information. This unique capability allows researchers to in-
vestigate how cellular function and identity are shaped by their
precise anatomical location and interactions with neighboring
cells within intact tissue microenvironments. The spatial per-
spective fundamentally enhances our ability to investigate and
ultimately target the complex cellular interactions underlying
disease recurrence and therapeutic resistance in glioma.

Recurrence constitutes the primary factor contributing to the
failure of glioma treatment, with approximately 90% of patients

diagnosed with HCG experiencing a recurrence following ther-
apeutic intervention [3]. To create therapies that can postpone
tumor recurrence and effectively address recurrent tumors, it
is essential to comprehend the mechanisms involved in glioma
recurrence. Currently, factors contributing to glioma recurrence
are thought to include incomplete surgical removal, the impact
of the tumor microenvironment [39], and the tumor resistance
to treatment [40]. However, the specifics are still not well under-
stood. Additionally, due to various factors like drug resistance
following glioma recurrence [41], the effectiveness of current
treatment guidelines remains limited [42]. This underscores the
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FIGURE 5 | Drug sensitivity analysis. (A-C) Association analysis between expression levels and drug sensitivity. Violin plots show the distribu-

tion of half-maximal inhibitory concentration (IC50) estimates for five chemotherapy drugs in high-expression (HExp) and low-expression (LExp)

groups. Wilcoxon test is used to assess differences between groups.
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FIGURE 6 | Immune infiltration. (A) Radar chart showing the proportion of immune cells in different groups (Primary, Recurrent) across sam-

ples. (B) Correlation heatmap of immune cells. Colors and correlation coefficient values indicate the strength of positive (red) and negative (blue)

correlations. (C) Box plot comparing the expression levels of immune cells between Primary and Recurrent groups. (D) Heatmap showing statistical
significance (p value) and expression trends of genes across different cells.

necessity for further investigation into the mechanisms of gli-
oma recurrence and its treatment.

A potentially effective approach is to focus on the elements of
the tumor microenvironment (TME) that are more genomically
stable. This research elucidated the significant role of fibroblasts
and their associated key genes, including AEBP1, ZNF708,
and TSHZ2, in the recurrence of glioma. Cancer-associated

fibroblasts (CAFs) represent a predominant component of the
stromal environment within solid tumors and are integral to
various aspects of tumor biology. They significantly influence
tumor initiation, progression, metastasis, resistance to therapy,
and evasion of the immune response by synthesizing a diverse
array of extracellular matrix (ECM) proteins and regulatory
molecules [43-45]. CAFs are integral to the remodeling of the
ECM and the facilitation of immune evasion [46]. Consequently,
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FIGURE 7 | Gene set enrichment analysis (GSEA) analysis of key genes. (A-C) Integrated results of GSEA and interaction network analysis. The
upper part shows GSEA results based on related signaling pathways: Each subplot displays the enrichment score (ES) of related signaling pathways
(e.g., Wnt, Hippo, Notch). The x-axis represents the rank of genes in the expression data, and the y-axis represents the cumulative enrichment score.
The enrichment level of signaling pathways reveals the biological processes potentially regulated by the target genes. The lower part shows the net-
work diagram of target genes: A circular network diagram displays the relationships between target genes and their significantly related genes and

signaling pathways. Colors indicate the direction of gene expression (red for upregulation, blue for downregulation), and the width of connecting

lines reflects the strength of correlation.

A

INItNI—tNUN ALPHA_RESPONSE I
2_STAT5_ SIGNAUNG __
TNFA_S SIGNALING VIA NFKB
ULATION —_
INTERFERON_ GAMMA RESPONSE I
MY

REACTIVE_OXYGEN_SPECIES PATHWAY_-
_SURFACE I
XENOBIOTIC_METABOLISM ]

P53_P)
IL6_JAK_STAT3_S_IGNALING I
KRAS_SIGNALING_DN I

ANDROGEN_RESPONSE
ADIPOGENESIS
GZIK (RIHECKPOINT

PANCREAS_BETA _( CELLS
PROTEIN_SECRETI I
MYC_ TARGE S,

ARGETS
PI3K_ AKT MTOR SIGNALING

GzM |_CHECKPOINT I
UV_RESPONSE_DN I
PANCREAS BETA CELLS—_

MITOTIC SPINDLE _—
IYC_TAI

UNFOLDED_| PROTEIN _RESPONSE N

HEME_METABOLISM

INTERFERON ALPHA RESPONSE
APICAL JU

P53_P/

BILE_ ACID METAEOLISM
TNFA_SIGNALING_VIA_NFKB
INTERFERON. GAMMA RESPONSE
IL2_STATS _¢ SIG

INFLAMMATORY RESPONSE
XENOBIOTIC_METABOLISM

EPITHELIAL MESE(I*;]QHYMAL_TRANSITION
ESTROGENiRESPONSEiLATE
REACTIVE_OXYGEN_SPECIES_PATHWAY
MYOGENESIS

PEROXIS GLYCOLYSIS
MTORC1 SIGNALING COAGULATION
MYC TARGETS_V- ANGIOGENESIS
\TTY_ACID. MET APOPTOSIS
OXIDATIVE PHOSPHORYLATION CHOLESTEROL_HOMEOSTASIS
-4 -2 0 2 -4 -2 0 2

t value of GSVA score
Hexp vs Lexp group of AEBP1

EPITHELIAL ! MESENCHVMAL TRANSITION |
K_STAT3_SIGNALING __
TNFA SIGNAIE:ING ‘}{I.A NFKB [

SURFACE ]
S I
ANGIOGENESIS
COAGULATION _

PANCREAS_BETA_CELLS
PONSE_UP

PROTEIN_SECRETION
HEDGEHOG_SIGNALING
BILE ACID METABOLISM
ADIPOGEI

MYC. TARGETS V1
PEROXISOME
XENOBIEOTIC_METABOLISM

DN,
SPERMATOGENESIS
FATTY_ACID_METABOLISM
OXIDATIVE_PHOSPHORYLATION

-2 0 2
t value of GSVA score
Hexp vs Lexp group of TSHZ2

t value of GSVA score
Hexp vs Lexp group of ZNF708

FIGURE 8 | Gene set variation analysis (GSVA) analysis of key genes. (A-C) GSVA significant pathway bar chart of key genes. Each subgraph
shows the sequencing results of functional pathways (up-regulated and down-regulated) that are significantly associated with the target gene, with
blue representing up-regulated pathways in which the gene is significantly involved, green representing down-regulated pathways, and gray repre-

senting non-significant pathways with low NES.

14

Annals of Clinical and Translational Neurology, 2026

85U80| 7 SUOWIWIOD 3AIIEaID 3|qeoljdde au Aq pausench aJe saole O ‘85N 4O Sa|nJ 10} Areiq 1 8UIUO /8|1 UO (SUOTIPUOD-pUR-SWBYW0D" AB | 1M Afe.q 1 Buljuo//SdNY) SUORIPUOD PUe SWwie | 8U1 88S *[9202/T0/2z] U0 ARiqITauliuO A8|IM Bl eueiyo0D Ag 90E0. EUTR/Z00T OT/I0p/w00 A8 1M Arelq1jeul uoj/Sdny woiy papeojumoq ‘0 ‘€03682€2



nCount_Spatial GSM8340236 GSMB8340237

0000 GSMB8340236 GSMB8340237

40000

nCount_Spatial
20000

15000 o 0
- &

=
w =

30000

GSMB8340238 GSMB8340239
. GSM8340238

20000

10000

I S S
3 & o &
& & & &
S5 s
& ¢

Ea

Identity

GSM8340236 GSM8340237 GSM8340236 GSM8340237

type type

B oigosendrocyte B oigodendrocyte first_type first_type
B reven B ewon + Olgadendrocye ° Otaocendooye
B Astocyte B Astrocyte ° Neuron o Newon
W veos W Moo o Astrooye o Astoore
B Fiorobiast B Fibrobiast o Myelad
R Teell Teel
g -
AR
GSM8340238 GSM8340239
GSM8340238 GSM8340239
type type first_type first_type
B oigosendrocyte B oigodendrocyte o Oligodendrocyte o Oligodendrocyte
W Neuron | © Neuron © Neuron
B Astrocyte B Astrocyte o Astrocyte o Astrocyte
| R | o Myeloid o Myeloid
B Fibroblast B Fibroblast © Fibroblast o Fibroblast
Teell Teell
E Oligodendrocyte Neuron Astrocyte Myeloid Fibroblast
COL4A1
FN1 »\\\\‘
—
COL4A2—_
p7 I
GFBP7 —_—
AZM\
ENC1
251 I;’Af;\' gmis o
[} TF SLC17A7 VESTA MTRNR2L1
=g PTGDS N —— MT1X CD74 \
g LDHA\ FN1
o SPARC—_ MT2A—* MT-ND2—5
=S I P | IS ek A | I L W loauam ==~ _ || o oo sl
w
N
o)
S
0.0
GABBR1
SPARC LINC01602
_______ {3V S ——— = ® T R e | | -
=RPS5A iBs FT o —ERA
LDHA . s TNR
S19 NRGN
& VEGFA iy —— _ SEZ6L
— SNAP25
CRYAB 1
——VIM ————MBP
-2.54
< N N P N N PN N PNIRNS NS PSRN NS

A Percentage Difference

FIGUREY9 | Dimensionality reduction, clustering, and subpopulation differential expression analysis of spatial transcriptomics data. (A) Quality
assessment of spatial sequencing data for samples GSM8340236 to GSM8340239. Bar plots show the nCount_Spatial (spatial location gene count)
for each sample, reflecting sequencing depth and data coverage. (B) UMAP dimensionality reduction visualization, with colors indicating different
cell types, showing the spatial distribution heterogeneity of cell composition across samples. (C) Deconvolution analysis showing the predominant
cell type for each spot. (D) Distribution of primary cell types (first_type) revealing microenvironment characteristics of each sample. (E) Differential
expression analysis, with the x-axis representing Log2FC and the y-axis representing the percentage difference.

CAFs represent viable candidates for the enhancement of can- exert on cancer cell behavior. For instance, BRAF inhibitors
cer treatment methodologies. It is evident that numerous current have been shown to activate stromal fibroblasts, which in turn
therapeutic approaches impact the communication between may facilitate a compensatory mechanism in cancer cells that
CAFs and cancer cells, thereby altering the influence that CAFs activates the ERK-MAPK pathway [47]. Numerous receptor
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tyrosine kinase inhibitors that are being developed show some that fibrotic niches developing after treatment enhance the re-
effectiveness against FGF and PDGF receptors, which can in- currence of glioma. This fibrotic response to treatment is driven
fluence fibroblast activity [48, 49]. Besides, researchers found by fibroblast-like cells originating from perivascular regions,
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which operate through transforming growth factor 8 (TGF-£)
signaling and neuroinflammatory activation [50]. Collectively,
these findings underscore the potential of targeting fibroblasts
as a promising therapeutic strategy.

Finding and validating the key genes of glioma recurrence is of
great significance for improving prognosis management. This
research indicates that glioma patients exhibiting low levels of
TSHZ2 and AEBP1 expression demonstrate an increased overall
survival rate. This is the opposite of ZNF708. AEBP1 has been
demonstrated to have a strong connection to cancer advance-
ment [51, 52]. Studies by Cheng et al. demonstrated that elevated
AEBP1 expression correlates with poor prognosis in glioma [53].
According to reports, AEBP1 might enhance the growth and
advancement of glioma cells in glioblastoma by activating the
NF-xB pathway and its associated targets, which is associated
with immunity in tumors [51]. Furthermore, the expression pat-
tern of AEBP1 may influence the infiltration of immune cells
[54]. Consequently, AEBP1 emerges as a potential prognostic
biomarker related to immune response in the context of glioma
recurrence. In line with existing literature, our data corroborate
the significant correlation between AEBP1 overexpression and
unfavorable patient outcomes in glioma, thereby underscoring
the consistency and reliability of our findings. TSHZ?2 is a mem-
ber of the teashirt C2H2-type zinc-finger protein family, which
is known for its role as transcriptional repressors in various de-
velopmental processes. Currently, the functional implications
of TSHZ?2 are primarily associated with lung adenocarcinoma,
breast cancer, Alzheimer's disease, congenital pelvi-ureteric
junction obstruction, and craniosynostosis [55-57]. ZNF708
remains poorly characterized, with only one study linking it to
breast cancer reported so far [58]. To our knowledge, no prior
studies have reported roles for TSHZ2 or ZNF708 in glioma. Our
work is the first to identify them as potential drivers of glioma
recurrence.

Furthermore, pivotal genes play a crucial role in informing per-
sonalized treatment strategies. The expression levels of these
key genes demonstrated a significant correlation with the sen-
sitivity to various chemotherapeutic agents, such as Vincristine,
Gemcitabine, Etoposide, and Cytarabine, thereby presenting
potential targets for the tailored treatment of relapsed glioma.

GSEA, GSVA, and PROGENYy analyses may yield partially over-
lapping yet occasionally inconsistent results. Such variability
is inherent to their distinct methodological frameworks; how-
ever, these approaches should be interpreted as complemen-
tary rather than contradictory. The observed differences reflect
their unique analytical perspectives: while GSEA emphasizes
phenotype-associated pathway enrichment, GSVA captures
inter-sample heterogeneity in pathway activity, and PROGENy
provides focused inference of signaling pathway perturbations.
Collectively, these methods offer a multi-faceted understanding
of biological processes, enhancing the robustness and compre-
hensiveness of our functional insights into the roles of AEBP1,
ZNF708, and TSHZ2 in glioma progression. AEBP1 was con-
sistently associated with inflammatory responses and antiviral
immunity in both GSEA and GSVA analyses, suggesting its po-
tential role in influencing glioma progression through modu-
lation of the tumor immune microenvironment. The pathways
enriched for ZNF708 indicate its involvement in DNA damage

repair and cell cycle regulation. TSHZ2 expression correlates
with tumor progression and cellular plasticity, contributing to
enhanced invasive and metastatic potential. PROGENy analysis
further complemented these findings at the cellular subpopula-
tion level. By systematically comparing overlapping and unique
pathway findings, we will strengthen the biological interpreta-
tion of our results and provide a more nuanced perspective on
the functional implications of the identified genes.

Taken together, the objective of this research is to identify and
validate the critical genes associated with glioma recurrence
utilizing sScRNA-seq and ST methodologies. Additionally, the
study seeks to explore potential avenues for enhancing the
prognostic management of patients experiencing recurrent
glioma.

5 | Limitations

Despite these promising findings, it also recognizes specific
limitations. First, in the TCGA database, the recurrence gli-
oma group contains only 13 samples. In the GEO database, the
single-cell dataset includes only 42 recurrence samples, and the
spatial transcriptome data file contains only four glioma sam-
ples for spatial transcriptome analysis. The sample sizes for the
single-cell and spatial transcriptome data are relatively small.
Accordingly, expanding the cohort will be a key objective in
future research. Secondly, the roles of the three key genes—
AEBP1, ZNF708, and TSHZ2—in glioma recurrence and drug
sensitivity predictions were not validated through in vitro or
in vivo experiments. Independent validation will be an im-
portant focus of our future work. Finally, while our study has
identified promising therapeutic candidates, their translational
potential requires further investigation through functional val-
idation of drug efficacy and assessment of clinical applicability.
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(A-C) Association analysis between expression levels and drug sen-
sitivity. Violin plots show the distribution of half-maximal inhibitory
concentration (IC50) estimates for six chemotherapy drugs in high-
expression (HExp) and low-expression (LExp) groups. Wilcoxon test is
used to assess differences between groups. Figure S2: ESTIMATE com-
bined scores across samples. Figure S3: Spatial cell type mapping using
RCTD. The spatial distribution of major cell types across tissue sections
is visualized, with color intensity reflecting the relative abundance of
each cell type at every spatial spot. This reveals the specific localization
and spatial heterogeneity of oligodendrocytes, neurons, astrocytes, my-
eloid cells, fibroblasts, and T cells. Table S1: GSVA enrichment scores
for AEBP1-associated signaling pathways. Table S2: GSVA enrichment
scores for ZNF708-associated signaling pathways. Table S3: GSVA en-
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