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ABSTRACT
Glioblastoma (GBM) is the most aggressive primary brain tumour in adults, characterised by rapid progression, extensive het-
erogeneity, and poor outcomes despite surgery, radiotherapy, and temozolomide (TMZ). A subpopulation of glioblastoma stem 
cells (GSCs) with self-renewal and multi-lineage differentiation capabilities drives tumour initiation, progression, recurrence, 
and therapeutic resistance. GSCs evade conventional treatments via enhanced DNA repair, multidrug efflux, activation of sur-
vival pathways, epigenetic reprogramming, and entry into quiescent states. Moreover, these cells utilise key immune escape 
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mechanisms, such as downregulation of major histocompatibility complex molecules and the secretion of immunosuppressive 
factors, to escape detection and destruction by the immune system. Evidence suggests that transformed neural stem cells are a 
likely source of GSCs, with key survival networks including EGFR, FGFR, HGFR, and PI3K/AKT/mTOR signalling. Their phe-
notypic plasticity and adaptability to the tumour microenvironment further complicate eradication. Stem cell-based strategies 
utilising NSCs, MSCs, haematopoietic stem/progenitor cells, or induced pluripotent stem cells can effectively deliver immuno-
modulators to counteract these immune evasion mechanisms, exploiting tumour tropic migration to deliver therapeutic payloads 
into hypoxic and infiltrative niches. Approaches such as suicide gene therapy, oncolytic virus delivery, and CXCL12—CXCR4 
axis modulation aim to target both proliferative and dormant GSCs. Preclinical studies demonstrate promising efficacy, yet 
challenges remain, including safety concerns, variability in outcomes, and the limited translational relevance of current models. 
This review provides a concise overview of GSC biology, resistance mechanisms, and emerging stem cell-based interventions, 
highlighting opportunities and obstacles in developing effective therapies for GBM.

1   |   Introduction

Glioblastoma stem cells (GSCs) represent a specialised popula-
tion within glioblastomas that exhibit stem cell-like properties, 
including the capacity for tumour self-renewal and multi-lineage 
differentiation. These cells are integral to the initiation, progres-
sion, and therapeutic resistance of glioblastoma. By sustaining 
tumour growth, enhancing invasion, and driving recurrence, 
GSCs contribute significantly to the aggressive nature of the 
disease. Their notable resistance to standard interventions like 
chemotherapy and radiotherapy (RT) has established them as 
a promising therapeutic target for enhancing clinical outcomes 
and addressing challenges associated with tumour heterogene-
ity and resistance mechanisms [1, 2].

GBM is the most malignant and rapidly progressing primary 
brain tumour, characterised by its dismal prognosis. Classified 
by the World Health Organization as the grade IV astrocytic 
neoplasm, GBM is the most common tumour of the central 
nervous system in adults [3]. Despite intensive treatment ap-
proaches including surgical resection, RT, and chemotherapy, 
median survival remains about 12–15 months after diagno-
sis, with tumours accounting for around 60% of all primary 
brain malignancies in adults. The disease indicates a higher 
incidence in males and mostly affects individuals aged 45 to 
70 years. Beyond its physical impact, GBM imposes a deep 
burden on patients and their families, often causing severe 
neurological deficits, cognitive determinations, and emotional 
distress [4, 5].

GBM's highly infiltrative growth pattern makes complete sur-
gical removal almost unattainable even with advanced neuro-
surgical techniques. Standard of care therapy usually involves 
maximal safe resection followed by chemo RT; however, sur-
vival rates stay unacceptably low. This shows the pressing need 
for innovative therapeutic methods that can address both the 
infiltrative nature and intrinsic resistance mechanism of GBM 
[6–8]. Stem cells hold exceptional promises in regenerative 
medicine because of their unique ability to self-renew and dif-
ferentiate into many cell types. This regeneration potential has 
led researchers to explore its use in the treatment of patholog-
ical conditions, including malignant brain tumours. In GBM 
therapy, stem cells offer an opportunity not only for targeted 
delivery of antitumor agents but also for helping the regen-
eration of healthy neural tissues [9]. Several stem cell-based 

approaches have been studied for GBM management, includ-
ing MSCs, NSCs, induced pluripotent stem cells iPSCs and 
haematopoietic stem cells HSCs. MSCs obtainable from bone 
marrow adipose tissue or umbilical cord blood can home to tu-
mour sites and secret antitumor compounds and immunomod-
ulatory factor [10].

NSCs, which naturally live in the adult brain, can differentiate 
into many neural cell types and can be genetically engineered to 
deliver a therapeutic agent directly to GBM cells. iPSCs are made 
by reprogramming adult somatic cells like skin fibroblasts into 
a pluripotent state similar to embryonic stem cells; when differ-
entiated, they can give neural cells and may be customised for 
patient-specific therapy [2]. HSCs are found in bone marrow. 
They can differentiate into various blood cell lineages. HSCs are 
mainly used along with high-dose chemotherapy to restore hae-
matopoiesis. This is common in processes like autologous hae-
matopoietic stem cell transplantation AHSCT. However, they do 
not directly target glioblastoma GBM cells [11]. The purpose of 
this review is to examine the current evidence about the use of 
stem cell-based therapies in GBM, highlighting their potential ad-
vantage, limitations, and future prospects. In alignment with the 
review focus, we will summarise GSC-driven resistance mecha-
nisms, discuss the immune microenvironment and immune eva-
sion in GBM, and examine stem cell-based strategies, particularly 
those for the delivery of immunomodulatory agents. This com-
prehensive approach aims to inform therapeutic decision-making 
in this very challenging disease and identify promising ways for 
future research.

2   |   Origin and Role of GSCs

Recent advances in molecular profiling have enabled GBM to 
be classified into the distinct molecular subtypes at both the 
bulk tissue and single-cell levels. Despite this advancement, 
the mechanisms behind the early phases of glioma genesis 
are still not completely clear. This uncertainty mainly stems 
from challenges in detecting tumours in the initial stage and 
the limited availability of early-stage specimens. Increasing 
evidence supports the cancer stem cell (CSC) model, which 
proposes that a subset of tumour cells possesses heightened 
self-renewal, proliferative, and differentiation capacities 
[12]. Originally identified in acute myeloid leukaemia, leu-
kaemia stem cells were found to drive disease initiation and 
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progression. Subsequently, CSC populations have also been 
detected in various solid tumours, including ones of the 
breast, prostate, colon, and pancreas. In GBM GSCs isolated 
from patient-derived tumours display potent tumorigenicity, 
evidenced by their ability to form neurospheres in culture, a 
hallmark of self-renewal [13].

Historically, GBM was thought to arise through dedifferentia-
tion of mature neural cells into progenitor-like states that are 
sustaining tumour progression. This view gradually shifted 
with the discovery of adult NSCs and the recognition of mo-
lecular and signalling parallels between NSCs and GSCs. Such 
similarities have led to the hypothesis that GBM originates from 
NSCs undergoing malignant transformation into GSCs, which 
then propagate neoplastic growth [14]. Supporting this, platelet-
derived growth factor (PDGF) activation inside NSCs of the sub-
ventricular zone (SVZ) has been shown to trigger hyperplasia 
and early tumour formation. Moreover, molecular classifica-
tions of high-grade gliomas indicate that tumour progression 
mirrors specific stages of normal neurogenesis, further linking 
gliomagenesis with developmental programmes [15]. GSCs have 
been identified by using NSC markers such as CD133, and these 
cells, when cultured, differentiate into tumour cells phenotyp-
ically similar to the patient's original tumour. High-resolution 
technologies such as single-cell RNA sequencing and RNA ve-
locity analyses have clarified cellular trajectories of tumour ini-
tiation, revealing that GBM evolution recapitulates conserved 
neurodevelopmental processes [15]. Rapidly proliferating can-
cer cells are emerging as the most tumorigenic and therapy-
resistant populations. Additionally, studies in patient samples 
and genome-edited mouse models have detected low-frequency 
GBM driver mutations in histologically normal SVZ tissue dis-
tant from the primary tumour. These mutations, present at high 
levels in corresponding tumours, suggest that mutated NSCs 
can migrate from the SVZ to other brain regions for seeding ma-
lignant lesions [15, 16].

The transformation of NSCs into GSCs may involve tumour 
suppressor loss, such as p53 inactivation, together with acti-
vation of mitogenic signalling pathways. Mutant p53 in NSCs 
accelerates oncogenic mutation accumulation, promoting 
expansion of Olig2-positive progenitor-like cells and glioma 
initiation [17]. Dysregulation of genes that govern cell cycle 
control and mitotic progression in neural progenitors, such as 
Aurora kinase A, Forkhead Box M1 FOXM1, and Diaphanous 
related formin 3 DIAPH3, can induce chromosomal instabil-
ity and predispose to malignant transformation [15]. Multiple 
experimental lines are converging on the idea that glioma 
genesis depends on activation of proliferative pathways like 
Ras and AKT in neural progenitors but not in differentiated 
astrocytes to generate high-grade gliomas that resemble 
human GBM [18]. Furthermore, signalling axes including 
AKT and NOTCH are influencing prognosis, while GSCs 
often show elevated WNT activity, enhanced neurosphere 
formation, and upregulated SOX2 expression. Aberrant Wnt 
β-catenin signalling promotes invasiveness and therapy resis-
tance partly through epithelial-mesenchymal transition that 
is driven by FOSL1 upregulation. Spatial transcriptomics has 
further demonstrated that NOTCH signalling is enriched in 
mesenchymal-like GBM cells infiltrating the surrounding 
brain tissue (Figure 1) [19].

3   |   Therapeutic Opportunities Targeting GSCs

GBM remains one of the most challenging malignancies to treat, 
with curative strategies still out of reach. The standard of care 
regimen consists of maximal safe surgical resection, adjuvant 
RT, and chemotherapy with the alkylating agent temozolomide. 
Although this multimodal approach modestly extends survival, 
it is often accompanied by considerable systemic toxicity and di-
minished quality of life [20]. Moreover, intrinsic and acquired 
resistance to treatment is common. Anti-angiogenic therapies, 
such as the vascular endothelial growth factor (VEGF) target-
ing antibody bevacizumab, have improved progression-free 
survival in some cases but failed to extend overall survival [21]. 
Treatment challenges are compounded by GBM's infiltrative 
nature, which precludes complete tumour removal, and by the 
blood–brain barrier, which restricts delivery of many systemic 
agents [6]. To address these obstacles, current research is fo-
cused on:

1.	 Elucidating the molecular mechanisms driving tumour 
growth, recurrence, and resistance.

2.	 Developing approaches to selectively target tumour cells 
while sparing normal brain tissue.

3.	 Translating molecular insights into innovative surgical 
and oncological strategies.

FIGURE 1    |    Parallel representation of neurogenesis (left) and glio-
magenesis (right), illustrating the relationship between GBM cell states 
and their cells of origin. Solid black arrows indicate normal differenti-
ation from NSCs through radial glia cells (RGCs) into lineage specif-
ic progenitors, oligodendrocyte progenitor cells (OPCs), astrocyte pro-
genitor cells (APCs), and neural progenitor cells (NPCs), which further 
mature into their respective cell types. Dashed red arrows represent 
malignant transformation from normal progenitors to GBM like coun-
terparts, OPC like, APC like, NPC like, and MES like, supported by sin-
gle cell RNA seq data. The MES like state shows a more distant similar-
ity to RGCs compared to the other states.
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4.	 Refining preclinical models to better predict clinical 
outcomes.

5.	 Advancing personalised medicine in clinical trials.

A promising area of investigation involves targeting GSCs through 
the manipulation of genetic and molecular pathways. Dysregulated 
signalling cascades that promote proliferation, survival, and mi-
gration present opportunities for therapeutic intervention, while 
tumour suppressive pathways may be harnessed to inhibit GSC 
function. Receptor tyrosine kinases (RTKs), a family of trans-
membrane receptors, play central roles in regulating cell growth, 
differentiation, motility, and metabolism [22]. Ligands such as 
epidermal growth factor (EGF), fibroblast growth factor (FGF), 
VEGF, platelet-derived growth factor (PDGF), transforming 
growth factor (TGF), and hepatocyte growth factor (HGF) activate 
RTKs, triggering dimerization or oligomerization and subsequent 
autophosphorylation. These events initiate downstream signalling 
through pathways including PI3K/AKT/mTOR, RAS/MAPK, and 
JAK/STAT, ultimately promoting tumour cell proliferation and 
invasion [23].

RTK activity is normally controlled by mechanisms such as 
autoinhibition and tyrosine phosphatase activity; however, in 
GBM, mutations, overexpression, or copy number alterations 
can shift the balance towards oncogenesis [24]. Consequently, 
numerous RTK inhibitors have been developed and tested in 
GBM, with varied success. While certain agents, such as anlo-
tinib and regorafenib, have shown moderate benefits, many, in-
cluding dasatinib, pazopanib, and ponatinib, have demonstrated 
limited efficacy in extending survival. Multi-target RTK inhib-
itors remain under evaluation, often in combination with other 
modalities, as researchers seek to optimise strategies for disrupt-
ing RTK-mediated GSC proliferation and survival [15, 25].

3.1   |   Targeting GSCs via Growth 
Factor Receptor Signalling

Among the growth factor receptors implicated in GBM, epidermal 
growth factor receptors (EGFRs) are the most frequently altered, 
with approximately 60% of cases showing driver mutations, re-
arrangements, alternative splicing events, or gene amplifications. 
Consequently, EGFR inhibition has long been a central focus of 
therapeutic development in GBM [26]. Monoclonal antibodies 
such as cetuximab and nimotuzumab, as well as small-molecule 
tyrosine kinase inhibitors including gefitinib, erlotinib, dacomi-
tinib, osimertinib, and depatuxizumab mafodotin, have under-
gone extensive evaluation. Despite early promise, most agents 
have demonstrated limited clinical benefit. For example, depatux-
izumab mafodotin did not improve overall survival in newly di-
agnosed patients with EGFR amplified tumours. Gefitinib, the 
first EGFR inhibitor approved by the FDA, failed to show clinical 
efficacy either alone or in combination regimens. Erlotinib, when 
used alongside RT and temozolomide (TMZ), produced mixed 
results in newly diagnosed GBM, though some studies reported 
modest benefit in recurrent disease. Dacomitinib, a second-
generation inhibitor, showed preclinical efficacy but lacked a 
significant clinical impact [27, 28]. The third-generation inhibitor 
osimertinib has greater potency against EGFR, with case reports 
and retrospective studies suggesting limited but notable benefit, 

particularly when combined with bevacizumab. Overall, mono-
therapy with EGFR inhibitors has yielded suboptimal outcomes, 
prompting interest in combinatorial approaches [29]. One emerg-
ing strategy involves cotargeting EGFR and the androgen receptor 
(AR), given evidence that AR activation can occur independently 
of hormonal ligands through EGFR signalling. AR expression 
correlates positively with EGFR in GBM, and preclinical studies 
have shown that the AR inhibitor enzalutamide, especially when 
combined with afatinib, reduces GSC populations and improves 
survival in animal models [30].

Fibroblast growth factor receptors (FGFRs) are altered in only 
about 3% of GBM cases, yet specific rearrangements, such as fu-
sions between FGFR1 or FGFR3 and transforming acidic coiled 
coil (TACC) proteins, produce constitutively active kinases that 
drive tumorigenesis. FGFR3 is the most commonly affected 
receptor through amplification or fusion events, while FGFR2 
alterations are less frequent and often result in nonfunctional 
chimeric proteins [19]. Nevertheless, rare cases of FGFR2 am-
plification with oncogenic fusion have been documented in 
aggressive GBM. Development of FGFR inhibitors has been 
slower than that of EGFR or VEGFR inhibitors, though several 
multitarget tyrosine kinase inhibitors (e.g., erlotinib, sorafenib, 
lapatinib, ponatinib, lucitanib, nintedanib) have shown some 
FGFR activity. Selective FGFR inhibitors such as erdafitinib, 
pemigatinib, and infigratinib are under investigation, with er-
dafitinib demonstrating tumour growth suppression in FGFR3 
TACC3 fusion-positive GBM and pemigatinib inducing partial 
responses in individual cases [31, 32]. The hepatocyte growth 
factor receptor (HGFR, also known as c-Met) is activated by 
hepatocyte growth factor/scatter factor and plays a key role in 
GSC biology, despite amplification occurring in fewer than 5% 
of GBM cases [15]. Selective inhibitors such as capmatinib have 
shown minimal efficacy as monotherapy in PTEN-deficient 
GBM but are being tested in combination with bevacizumab. 
Crizotinib has shown encouraging results in early phase stud-
ies, with improved progression-free and overall survival when 
added to standard chemoradiotherapy, and synergistic effects 
when combined with EGFR inhibitors in preclinical mod-
els [33].

3.2   |   Targeting GSCs via the PI3K/AKT/mTOR 
Pathway

The PI3K/mTOR signalling axis integrates extracellular cues 
such as nutrient availability, growth factors, and hormones to 
regulate proliferation, survival, and metabolism. Upon activa-
tion, PI3K catalyses the production of PIP3, which recruits and 
activates downstream kinases including PDK1 and AKT [34]. 
Activated AKT influences numerous cellular processes:

•	 Suppression of proapoptotic transcription factors (FOXO 
family) and proteins (BAD, BAX, caspases 3/9) [35].

•	 Promotion of cell cycle progression via MDM2 mediated 
p53 degradation and stabilisation of cyclin D1/D3 through 
p27 and p21 regulation [36].

•	 Inhibition of glycogen synthase kinase 3β [37].

•	 Activation of IKKα and Tpl2, leading to NF-κB signalling [38].
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AKT also activates mTORC1, a major regulator of tumour 
growth. Given that over 80% of GBM harbour alterations in 
RTK/PI3K signalling, this pathway is a major therapeutic tar-
get. Inhibitors fall into several classes: dual PI3K/mTOR inhibi-
tors, pan PI3K inhibitors, isoform-selective PI3K inhibitors, and 
mTOR-specific inhibitors [19]. Dual inhibitors such as dactoli-
sib, voxtalisib, and paxalisib have been evaluated in both pre-
clinical and clinical settings. Dactolisib, when combined with 
chemoradiotherapy, showed antitumor activity in  vitro and in 
animal models, though monotherapy in mice was ineffective 
and toxicities remain a challenge. Clinical trials for dactolisib 
and voxtalisib have shown limited benefit, whereas paxalisib 
has demonstrated more encouraging results in early trials for 
both newly diagnosed and recurrent GBM [15, 39]. Pan PI3K 
inhibitors, including buparlisib, pilaralisib, pictilisib, and sono-
lisib, have largely shown limited clinical efficacy, with toxicity 
frequently limiting their use. Isoform-specific inhibitors, such 
as the p110β selective agent GSK2636771, are in early clinical 
evaluation, particularly for PTEN-deficient tumours [39]. mTOR 
inhibition began with rapamycin, followed by its analogues 
everolimus, temsirolimus, sirolimus, and ridaforolimus. Despite 
good tolerability, these agents have generally failed to improve 
survival, likely due to incomplete pathway blockade and lack of 
mTORC2 inhibition. Newer ATP competitive inhibitors target-
ing both mTORC1 and mTORC2, such as vistusertib and torin 
derivatives, are under preclinical study [40] (Figure 2).

3.3   |   Epigenetic Mechanisms in GSC Regulation

Epigenetic dysregulation in GBM includes altered DNA meth-
ylation, histone modifications, and chromatin remodelling, 
all of which can promote oncogenesis or therapy resistance. 
Global hypomethylation can activate oncogenes and destabi-
lise the genome, whereas promoter hypermethylation can si-
lence tumour suppressors, as observed with BCL2L11 (BIM) 
in EGFR inhibitor-resistant GBM [41]. Methylation of the 
MGMT promoter is a favourable prognostic factor and predicts 
better response to TMZ. DNA methyltransferase inhibitors 
such as decitabine and 5-azacytidine have shown the capac-
ity to alter methylation patterns, enhance immune recogni-
tion, and suppress tumour growth in preclinical models [42]. 
Histone modifications also regulate GSC biology. EZH2, a his-
tone methyltransferase within the PRC2 complex, represses 
tumour suppressor genes and is implicated in GBM progres-
sion. Histone deacetylases (HDACs), particularly HDAC6, in-
fluence GSC proliferation and drug resistance by modulating 
EGFR trafficking, cytoskeletal organization, and downstream 
signalling. HDAC inhibitors, including belinostat, panobi-
nostat, and vorinostat, have been tested clinically, but most 
failed to demonstrate significant benefit as monotherapy or 
in combination regimens [43]. Notably, valproic acid, a selec-
tive class I/IIa HDAC inhibitor, has been associated with pro-
longed survival when used with standard chemoradiotherapy, 

FIGURE 2    |    Key signalling pathways in glioma stem cells (GSCs) and their roles in tumour progression, stemness maintenance, angiogenesis, 
invasion, and drug resistance. The diagram illustrates six major pathways: PI3K/AKT, Notch, Wnt, Sonic Hedgehog, NF κB, and JAK/STAT, each 
contributing to the survival and aggressive behaviour of GSCs, highlighting their importance as potential therapeutic targets in GBM treatment.
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potentially by enhancing TMZ efficacy. Ongoing studies 
are evaluating isoform-selective HDAC inhibitors for GBM 
(Table 1) [44–47].

4   |   GBM Is Extremely Challenging to Overcome

Despite extensive research and numerous clinical trials, thera-
peutic advances in GBM remain limited. Barriers include:

1.	 The infiltrative nature of GBM and the sensitivity of brain 
tissue prevent complete surgical resection [19].

2.	 The restrictive blood-brain barrier limits drug delivery [6].

3.	 A lack of early detection tools and biomarkers [6].

4.	 The adaptability of GBM cells, which enables them to evade 
therapy through molecular and phenotypic changes [7].

4.1   |   Heterogeneity and Plasticity in GSCs

GBM is highly heterogeneous at genetic, transcriptional, and phe-
notypic levels, with GSCs serving as key drivers of this diversity. 
Molecular subtypes, classical, proneural, and mesenchymal, are 
defined by distinct driver mutations and exhibit different biolog-
ical behaviours and prognoses. Advances in single-cell sequenc-
ing have refined this classification, revealing malignant cell states 
resembling neural progenitor-like, oligodendrocyte precursor-like, 
astrocyte-like, and mesenchymal-like phenotypes [48]. GSCs also 
display significant plasticity, transitioning dynamically between 
cellular states in response to microenvironmental cues, therapies, 
transcriptional programmes, and epigenetic changes. This flexibil-
ity enables therapy resistance and complicates targeting strategies. 
Epigenetic modifications, such as methylation changes induced by 
stressors like hypoxia or irradiation, can drive state transitions. 
Transcriptomic shifts, mediated by transcription factors includ-
ing ASCL1, HES1, OLIG2, and SOX2, further sustain stemness or 
promote differentiation, depending on expression patterns [15, 49].

4.2   |   Quiescence and Therapy Resistance

A subset of GSCs can survive in hypoxic, nutrient-deprived re-
gions by entering a quiescent, reversible G0 state. These dormant 
cells evade therapies that target rapidly dividing populations and 
can later re-enter the cell cycle to drive recurrence. Quiescent 
GSCs exhibit distinct molecular profiles and often adopt a 
mesenchymal-like, migratory phenotype, facilitating tumour re-
population. Targeting pathways that regulate quiescence, such 
as FOXG1/Wnt β-catenin or BMP signalling, may improve treat-
ment efficacy. Strategies under investigation include forcing qui-
escent cells to re-enter the cell cycle for subsequent elimination or 
maintaining them in a permanent dormant state [49, 50].

4.3   |   Resistance to Therapy

4.3.1   |   Resistance to Chemotherapy

Temozolomide (TMZ) remains the first-line chemotherapeu-
tic for GBM and has contributed to improved patient survival. 
Nonetheless, resistance to TMZ is widespread and a major cause 

of tumour relapse and treatment failure. TMZ acts by methylating 
guanine at the O6 position during DNA replication, creating mis-
matches that lead to G2/M arrest and apoptosis [51]. Resistance 
frequently arises from elevated activity of the DNA repair enzyme 
O6 methylguanine DNA methyltransferase (MGMT), which re-
moves the methyl group from alkylated guanine, restoring DNA 
integrity and negating the drug's cytotoxicity. MGMT is markedly 
upregulated in GSCs, conferring a strong innate resistance and 
rendering these cells highly refractory to therapy. Within the tu-
mour core, hypoxic conditions cause fluctuating MGMT expres-
sion, further enhancing protection against TMZ [52].

Chemoresistance in GSCs can also involve cell-cycle modula-
tion, with extended G2/M arrest mediated by CHK1, CDC25C, 
and CDC2, allowing additional time for DNA repair. Some 
cells adopt a quiescent state under therapeutic stress, avoiding 
cytotoxic damage; upon repair, they can re-enter the cell cycle 
through activation of growth regulatory proteins such as CDK2 
and E2F. Furthermore, TMZ-resistant GSC clones express 
higher levels of antiapoptotic genes, including MCL1, BCL2, and 
BCL2L1a, compared with differentiated tumour cells [53, 54]. 
Multidrug resistance (MDR) is another hallmark of GSCs, pri-
marily driven by overexpression of ATP-binding cassette (ABC) 
transporters, which actively expel chemotherapeutic agents, 
lowering their intracellular concentration [55]. ABCG2 (BCRP1) 
is strongly expressed in GSCs and associated with a ‘side popu-
lation’ phenotype characterised by high efflux capacity and the 
ability to survive therapy. MDR1 (Pglycoprotein) is also elevated 
in GSCs, conferring resistance to agents such as doxorubicin 
and etoposide. Combining chemotherapy with MDR inhibitors, 
such as melatonin or perifosine, can enhance drug sensitivity 
and therapeutic efficacy [13]. GSC chemoresistance is further 
reinforced by the activation of signalling pathways, including 
NOTCH and Sonic Hedgehog (SHH), in response to TMZ. This 
activation increases the expression of downstream effectors like 
NOTCH1 and GLI1. Pharmacological inhibition of these path-
ways with agents such as cyclopamine or γsecretase inhibitors 
markedly enhances TMZ-induced cytotoxicity, offering a poten-
tial route to improve treatment outcomes [19].

4.3.2   |   Resistance to Radiotherapy

RT is a mainstay in GBM management, yet radioresistance is a 
frequent and formidable obstacle. Factors influencing tumour 
cell survival after radiation include cell intrinsic properties, 
radiation dose, and the surrounding microenvironment [56]. 
GSCs play a pivotal role in mediating resistance, enabling tu-
mour persistence, renewed proliferation, and recurrence. These 
cells demonstrate preferential activation of DNA damage check-
points and superior DNA damage repair (DDR) capacity, medi-
ated by kinases such as CHK1 and CHK2. A delayed cell cycle 
progression further enhances survival by allowing efficient 
repair before cell division resumes [54]. This enhanced DDR 
capacity presents a therapeutic vulnerability; inhibition of key 
regulators such as ATM, ATR, CHK1, CHK2, and PARP1 can 
sensitise GSCs to radiation. Overexpression of RAD51, another 
critical DDR protein, facilitates repair of RT-induced double-
strand breaks in GSCs. Targeting RAD51 with inhibitors like 
RI-1 or B02 impairs DNA repair, depletes GSC populations, and 
increases radiosensitivity (Table 2) [48, 58–65].
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5   |   A Comprehensive Overview of Current Clinical 
Trials

A variety of innovative approaches are being explored to en-
hance treatment options for GBM, particularly focusing on 
immunotherapies and advanced therapeutic techniques. One 
promising strategy involves using bispecific antibodies com-
bined with white blood cells to locate and destroy tumour cells 
while sparing normal cells. A Phase I trial is currently assess-
ing the effectiveness of this combination for patients with 
recurrent or refractory glioblastoma multiforme [1, 66, 67]. 
Another experimental treatment, referred to as TVI Brain 
1, aims to harness ‘killer’ white blood cells to target cancer 
cells. Previous Phase I studies have shown that this treatment 
is safe and has prolonged survival in some patients. This has 
led to a Phase II study designed to identify the most effective 
vaccine components, utilising dendritic cells treated with tu-
mour lysate obtained during surgery [2, 68]. Additionally, a 
single-centre Phase I study is investigating the safety of ad-
ministering autologous dendritic cells combined with tumour-
derived stem cells to patients with recurrent brain tumours. 
Positive results could pave the way for a Phase II efficacy trial 
[3, 69, 70].

In another approach, patients are being randomised to receive 
nivolumab, either alone or in combination with dendritic cell 
vaccine therapy, prior to surgical intervention. After surgery, 
both groups will continue receiving DC vaccines and nivolumab 
until disease progression is confirmed [4, 71, 72]. An open-label 
Phase I study is also underway, examining the safety of com-
bining EGFRvIII-targeted CAR T cells with pembrolizumab, a 
PD-1 inhibitor, for patients newly diagnosed with GBM. This 
study aims to improve outcomes for this high-risk population 
[5]. Moreover, researchers are evaluating a novel strategy in-
volving the use of oncolytic adenovirus delivered through neu-
ral stem cells in conjunction with radiation and chemotherapy, 
seeking enhanced efficacy without increasing toxicity for newly 
diagnosed malignant gliomas [6, 73]. A Phase I/II trial is also 
focusing on the effects of combining temozolomide with stem 
cell transplantation for newly diagnosed GBM patients, target-
ing the stopping of cancer cell growth while preparing for trans-
plantation. Research continues to determine the effectiveness 
of high-dose versus intermediate-dose chemotherapy followed 
by autologous stem cell transplantation, with some trials also 
looking into the addition of isotretinoin to prevent recurrence 
[7, 74, 75].

Finally, a clinical trial is exploring the use of genetically modi-
fied neural stem cells that convert 5-fluorocytosine into fluoro-
uracil directly at tumour sites, presenting a targeted approach to 
treating high-grade gliomas [8]. Chemotherapy drugs like car-
boplatin, thiotepa, and etoposide operate through various mech-
anisms to halt tumour cell division, ultimately leading to cancer 
cell death. Combining chemotherapy with autologous stem 
cell transplantation may enable doctors to administer higher 
doses of these drugs, thereby increasing tumour cell kill rates. 
Additionally, isotretinoin has shown potential in preventing 
glioma recurrence, but it remains unclear which chemotherapy 
regimen, alone or combined with isotretinoin, is most effective 
for treating recurrent high-grade glioma [9]. Furthermore, ge-
netically modified NSCs that can convert 5-fluorocytosine into 

the chemotherapy agent fluorouracil directly at tumour sites 
may represent a promising treatment avenue. This approach is 
being explored in clinical trials involving patients undergoing 
surgery for recurrent high-grade gliomas [10] (Table 3).

6   |   Exploration of Future Strategies for GSC 
Targeted Therapies

Identifying specific biomarkers associated with GSCs is crucial 
for improving both diagnostic accuracy and therapeutic target-
ing. These biomarkers can be instrumental in personalising 
treatment plans, allowing clinicians to select therapies tailored 
to the molecular profile of individual tumours. Research into 
extracellular vesicles (EVs) offers a promising avenue for bio-
marker discovery [76, 77]. EVs, which contain proteins, lipids, 
and nucleic acids released by cells, can reflect the state of the 
tumour microenvironment and the molecular profile of GSCs. 
Analysing the content of EVs in bodily fluids, such as blood 
or cerebrospinal fluid, could yield non-invasive biomarkers for 
early detection, monitoring treatment response, and predicting 
outcomes [76, 77]. Furthermore, understanding the interactions 
between GSCs and the tumour microenvironment might reveal 
new pathways that influence tumour behaviour and treatment 
resistance [78]. For instance, components of the microenviron-
ment, such as specific cytokines or metabolic byproducts, could 
act as indicators of GSC activity and provide additional thera-
peutic targets [79, 80].

The advent of CRISPR technology for gene editing opens up 
innovative possibilities in targeted therapies for GBM. By spe-
cifically modifying GSC characteristics such as their prolifer-
ation rate, tumorigenicity, or resistance to existing treatments, 
researchers can develop a deeper understanding of GSC biology 
[79, 80]. For example, CRISPR can be employed to silence onco-
genic pathways that are critical for GSC survival and prolifera-
tion. By knocking out genes responsible for maintaining GSC 
properties, researchers can explore how these cells adapt and 
whether targeted therapies can be developed to exploit any new-
found vulnerabilities [80, 81]. Moreover, CRISPR technology 
facilitates the creation of more accurate preclinical models of 
GBM. By genetically engineering GSCs to mimic patient-specific 
characteristics, researchers can test new drugs and combina-
tions in a more representative setting. Such models can yield 
valuable insights into which therapies may be most effective in 
real-world scenarios. Integrating artificial intelligence (AI) and 
machine learning into GBM research has the potential to revolu-
tionise drug discovery and treatment strategies [82, 83].

AI can analyse large datasets, including genomic, proteomic, 
and clinical data, to uncover patterns that may not be immedi-
ately apparent through traditional analysis methods. By lever-
aging AI algorithms, researchers can predict which compounds 
are likely to interact effectively with GSCs [82, 83]. For instance, 
machine learning models can sort through vast chemical librar-
ies to identify candidates that target specific biomarkers or path-
ways relevant to GSCs, thereby streamlining the development of 
targeted therapies [84, 85]. Furthermore, AI can assess patient 
data to identify subgroups that may respond uniquely to certain 
treatments, enabling personalised approaches that optimise effi-
cacy and minimise side effects [84, 85]. This predictive capacity 
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enhances the likelihood of successful treatment outcomes and 
can inform clinical decisions more effectively than traditional 
methods (Table 4).

7   |   Perspectives and Future Directions

GSCs remain a formidable therapeutic target due to their hetero-
geneity, adaptability, and capacity to occupy hypoxic, invasive 
niches. Their ability to adopt quiescent states enables survival 
under conventional therapies. Stem cell-based strategies have 
emerged as a promising avenue to circumvent these challenges. 
Engineered NSCs, MSCs, and haematopoietic stem and pro-
genitor cells are among the most widely investigated platforms 
[13, 86]. A key advantage of these cell types is their inherent 
ability to home to sites of injury or tumour growth, including 
hypoxic and deeply infiltrative regions inaccessible to many 
therapies [87]. This tumour tropism is mediated by growth fac-
tors, chemokines, and inflammatory cues within the glioma 
microenvironment. MSCs and NSCs can cross the blood–brain 
barrier and integrate into tumour-associated vasculature, en-
abling perivascular migration and sustained intratumoral 
presence. This targeting capability allows these cells to reach 
quiescent GSCs in otherwise inaccessible niches and may over-
come the challenges posed by GBM heterogeneity [49].

Engineered stem cells also serve as versatile vehicles for gene 
therapy, offering immune evasion and amenability to genetic 
modification. Suicide gene therapy, in which stem cells are en-
gineered to express prodrug-activating enzymes such as herpes 
simplex virus thymidine kinase (HSV TK), allows localised 
conversion of prodrugs like ganciclovir into cytotoxic metab-
olites. This approach induces tumour-specific cell death, with 
a bystander effect extending toxicity to adjacent tumour cells. 

Dual suicide gene systems, such as HSV TK combined with cy-
tosine deaminase (CD), generate synergistic cytotoxic effects, 
reduce the risk of resistance, and enhance safety by enabling 
self-elimination of therapeutic cells after treatment [88, 89].

Advanced strategies include MSCs engineered to produce anti-
angiogenic proteins and radiation-activated proteins for com-
bined vascular disruption and targeted elimination. HSCs have 
been modified to deliver TGFβ inhibitors selectively to the GBM 
microenvironment, augmenting the effects of RT and stimulat-
ing durable immune responses [90]. Additionally, MSCs can de-
liver oncolytic viruses to restore tumour suppressors such as p53 
and PTEN, improving viral replication and distribution within 
tumours. NSCs delivering replicating oncolytic adenoviruses 
have shown potential in both newly diagnosed and recurrent 
GBM [48]. The CXCL12–CXCR4 axis is a critical regulator of 
tumour cell migration, dormancy, and therapeutic resistance 
in GBM. Elevated CXCL12 in necrotic and angiogenic niches 
attracts CXCR4-expressing stem cells, guiding their migration 
towards invasive and hypoxic tumour zones. Engineering MSCs 
to overexpress CXCR4 enhances tumour tropism [91]. Notably, 
under TMZ stress, CXCL12–CXCR4 signalling modulates 
GSC quiescence and reactivation, contributing to recurrence. 
Targeting this axis with agents such as plerixafor has shown 
success in mobilising dormant stem cells in other cancers, sug-
gesting dual utility in disrupting protective niches and guiding 
therapeutic stem cells to resistant GSC populations [92, 93]. 
Human induced pluripotent stem cells (hiPSCs) offer an alterna-
tive platform with unlimited self-renewal, patient-specific com-
patibility, and greater genetic engineering flexibility compared 
to MSCs and NSCs. Neural progenitors derived from hiPSCs, 
when engineered with suicide genes, have demonstrated supe-
rior efficacy against GSCs compared to MSC-based approaches 
(Figure 3) [94].

TABLE 4    |    Summary of strategies for improving treatment outcomes in GBM.

Strategy Description Potential benefits References

Novel biomarkers Identification of specific biomarkers 
associated with GSCs, focusing on 
extracellular vesicles and tumour 
microenvironment interactions.

Improved diagnostic accuracy 
Personalised treatment plans non 

invasive monitoring of tumour 
progression and response to therapy

[78]

CRISPR technology Utilisation of CRISPR for gene editing 
to modify GSC characteristics or 
silence oncogenic pathways and 

create accurate preclinical models.

Enhanced understanding of GSC 
biology Development of therapies 

targeting key pathways More 
representative models for drug testing

[80, 81]

Artificial intelligence Integration of AI and machine learning 
to analyse large datasets and uncover 

patterns in drug discovery related to GSCs.

Streamlined identification of effective 
compounds Personalised treatment 

approaches through predictive 
analytics Improved patient outcomes

[82, 83]

Combination therapies Exploration of synergistic effects 
between emerging therapies and 

existing treatment modalities, such as 
immunotherapy and chemotherapy.

Enhanced treatment efficacy 
Overcoming resistance 

mechanisms Potential reduction 
in tumour recurrence and 

improvement in survival rates

[84]
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8   |   Discussion

The potential for tumorigenesis in stem cell-based therapies 
remains a significant concern. Malignant transformation has 
been observed in long-term cultures of bone marrow-derived 
MSCs, with environmental factors such as oxygen tension 
influencing transformation risk. Multipotent stem cells like 
NSCs, MSCs, and HSCs are generally considered more stable 
and safer for therapeutic use than pluripotent cells, including 
embryonic stem cells (ESCs) and iPSCs [95]. MSC viability de-
pends on cell adhesion and communication, which are often 
disrupted during isolation and transplantation. This disruption 
can trigger anoikis, apoptosis resulting from detachment from 
the extracellular matrix, reducing cell engraftment and per-
sistence [96]. Enhancing adhesion through biodegradable scaf-
folds or biomaterials may improve MSC retention and efficacy. 
MSCs likely exert transient rather than permanent therapeu-
tic effects, and limiting their persistence could reduce long-
term risks. Treatment outcomes depend on factors such as cell 
source, expansion protocols, administration route, dosing, and 
genetic modifications [97].

The effects of MSCs on tumours vary across studies, influenced 
by cell source and timing of administration. Some data suggest 
adult MSCs may promote tumour growth when administered 
concurrently with tumour cells, while delayed administration 
may inhibit progression. This indicates that the stage of tu-
mour development is a critical determinant of MSC effects [98]. 

Finally, significant differences between preclinical models and 
human GBM, particularly in vascularization and genetic het-
erogeneity, complicate the translation of laboratory findings to 
clinical benefit. Bridging this gap requires more representative 
models to improve the predictive value of preclinical research 
and ultimately enhance treatment outcomes in patients with 
GBM [99]. GSCs play a central role in therapeutic resistance 
due to their heterogeneity, adaptability, and ability to occupy 
inaccessible niches. Targeting GSCs is crucial for overcoming 
immune evasion and enhancing treatment efficacy in GBM. 
Stem cell-based delivery systems, such as engineered neural 
stem cells and mesenchymal stem cells, show great promise 
in this area. However, challenges remain, including poten-
tial tumorigenesis, variable effects depending on the tumour 
stage, and the need for more representative preclinical models. 
Addressing these limitations will be essential for translating 
these strategies into effective therapies for GBM patients.
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