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ABSTRACT

Glioblastoma (GBM) is the most aggressive primary brain tumour in adults, characterised by rapid progression, extensive het-
erogeneity, and poor outcomes despite surgery, radiotherapy, and temozolomide (TMZ). A subpopulation of glioblastoma stem
cells (GSCs) with self-renewal and multi-lineage differentiation capabilities drives tumour initiation, progression, recurrence,
and therapeutic resistance. GSCs evade conventional treatments via enhanced DNA repair, multidrug efflux, activation of sur-
vival pathways, epigenetic reprogramming, and entry into quiescent states. Moreover, these cells utilise key immune escape
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mechanisms, such as downregulation of major histocompatibility complex molecules and the secretion of immunosuppressive
factors, to escape detection and destruction by the immune system. Evidence suggests that transformed neural stem cells are a
likely source of GSCs, with key survival networks including EGFR, FGFR, HGFR, and PI3K/AKT/mTOR signalling. Their phe-
notypic plasticity and adaptability to the tumour microenvironment further complicate eradication. Stem cell-based strategies

utilising NSCs, MSCs, haematopoietic stem/progenitor cells, or induced pluripotent stem cells can effectively deliver immuno-

modulators to counteract these immune evasion mechanisms, exploiting tumour tropic migration to deliver therapeutic payloads

into hypoxic and infiltrative niches. Approaches such as suicide gene therapy, oncolytic virus delivery, and CXCL12—CXCR4

axis modulation aim to target both proliferative and dormant GSCs. Preclinical studies demonstrate promising efficacy, yet

challenges remain, including safety concerns, variability in outcomes, and the limited translational relevance of current models.

This review provides a concise overview of GSC biology, resistance mechanisms, and emerging stem cell-based interventions,

highlighting opportunities and obstacles in developing effective therapies for GBM.

1 | Introduction

Glioblastoma stem cells (GSCs) represent a specialised popula-
tion within glioblastomas that exhibit stem cell-like properties,
including the capacity for tumour self-renewal and multi-lineage
differentiation. These cells are integral to the initiation, progres-
sion, and therapeutic resistance of glioblastoma. By sustaining
tumour growth, enhancing invasion, and driving recurrence,
GSCs contribute significantly to the aggressive nature of the
disease. Their notable resistance to standard interventions like
chemotherapy and radiotherapy (RT) has established them as
a promising therapeutic target for enhancing clinical outcomes
and addressing challenges associated with tumour heterogene-
ity and resistance mechanisms [1, 2].

GBM is the most malignant and rapidly progressing primary
brain tumour, characterised by its dismal prognosis. Classified
by the World Health Organization as the grade IV astrocytic
neoplasm, GBM is the most common tumour of the central
nervous system in adults [3]. Despite intensive treatment ap-
proaches including surgical resection, RT, and chemotherapy,
median survival remains about 12-15 months after diagno-
sis, with tumours accounting for around 60% of all primary
brain malignancies in adults. The disease indicates a higher
incidence in males and mostly affects individuals aged 45 to
70years. Beyond its physical impact, GBM imposes a deep
burden on patients and their families, often causing severe
neurological deficits, cognitive determinations, and emotional
distress [4, 5].

GBM's highly infiltrative growth pattern makes complete sur-
gical removal almost unattainable even with advanced neuro-
surgical techniques. Standard of care therapy usually involves
maximal safe resection followed by chemo RT; however, sur-
vival rates stay unacceptably low. This shows the pressing need
for innovative therapeutic methods that can address both the
infiltrative nature and intrinsic resistance mechanism of GBM
[6-8]. Stem cells hold exceptional promises in regenerative
medicine because of their unique ability to self-renew and dif-
ferentiate into many cell types. This regeneration potential has
led researchers to explore its use in the treatment of patholog-
ical conditions, including malignant brain tumours. In GBM
therapy, stem cells offer an opportunity not only for targeted
delivery of antitumor agents but also for helping the regen-
eration of healthy neural tissues [9]. Several stem cell-based

approaches have been studied for GBM management, includ-
ing MSCs, NSCs, induced pluripotent stem cells iPSCs and
haematopoietic stem cells HSCs. MSCs obtainable from bone
marrow adipose tissue or umbilical cord blood can home to tu-
mour sites and secret antitumor compounds and immunomod-
ulatory factor [10].

NSCs, which naturally live in the adult brain, can differentiate
into many neural cell types and can be genetically engineered to
deliver a therapeutic agent directly to GBM cells. iPSCs are made
by reprogramming adult somatic cells like skin fibroblasts into
a pluripotent state similar to embryonic stem cells; when differ-
entiated, they can give neural cells and may be customised for
patient-specific therapy [2]. HSCs are found in bone marrow.
They can differentiate into various blood cell lineages. HSCs are
mainly used along with high-dose chemotherapy to restore hae-
matopoiesis. This is common in processes like autologous hae-
matopoietic stem cell transplantation AHSCT. However, they do
not directly target glioblastoma GBM cells [11]. The purpose of
this review is to examine the current evidence about the use of
stem cell-based therapies in GBM, highlighting their potential ad-
vantage, limitations, and future prospects. In alignment with the
review focus, we will summarise GSC-driven resistance mecha-
nisms, discuss the immune microenvironment and immune eva-
sion in GBM, and examine stem cell-based strategies, particularly
those for the delivery of immunomodulatory agents. This com-
prehensive approach aims to inform therapeutic decision-making
in this very challenging disease and identify promising ways for
future research.

2 | Origin and Role of GSCs

Recent advances in molecular profiling have enabled GBM to
be classified into the distinct molecular subtypes at both the
bulk tissue and single-cell levels. Despite this advancement,
the mechanisms behind the early phases of glioma genesis
are still not completely clear. This uncertainty mainly stems
from challenges in detecting tumours in the initial stage and
the limited availability of early-stage specimens. Increasing
evidence supports the cancer stem cell (CSC) model, which
proposes that a subset of tumour cells possesses heightened
self-renewal, proliferative, and differentiation capacities
[12]. Originally identified in acute myeloid leukaemia, leu-
kaemia stem cells were found to drive disease initiation and
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progression. Subsequently, CSC populations have also been
detected in various solid tumours, including ones of the
breast, prostate, colon, and pancreas. In GBM GSCs isolated
from patient-derived tumours display potent tumorigenicity,
evidenced by their ability to form neurospheres in culture, a
hallmark of self-renewal [13].

Historically, GBM was thought to arise through dedifferentia-
tion of mature neural cells into progenitor-like states that are
sustaining tumour progression. This view gradually shifted
with the discovery of adult NSCs and the recognition of mo-
lecular and signalling parallels between NSCs and GSCs. Such
similarities have led to the hypothesis that GBM originates from
NSCs undergoing malignant transformation into GSCs, which
then propagate neoplastic growth [14]. Supporting this, platelet-
derived growth factor (PDGF) activation inside NSCs of the sub-
ventricular zone (SVZ) has been shown to trigger hyperplasia
and early tumour formation. Moreover, molecular classifica-
tions of high-grade gliomas indicate that tumour progression
mirrors specific stages of normal neurogenesis, further linking
gliomagenesis with developmental programmes [15]. GSCs have
been identified by using NSC markers such as CD133, and these
cells, when cultured, differentiate into tumour cells phenotyp-
ically similar to the patient's original tumour. High-resolution
technologies such as single-cell RNA sequencing and RNA ve-
locity analyses have clarified cellular trajectories of tumour ini-
tiation, revealing that GBM evolution recapitulates conserved
neurodevelopmental processes [15]. Rapidly proliferating can-
cer cells are emerging as the most tumorigenic and therapy-
resistant populations. Additionally, studies in patient samples
and genome-edited mouse models have detected low-frequency
GBM driver mutations in histologically normal SVZ tissue dis-
tant from the primary tumour. These mutations, present at high
levels in corresponding tumours, suggest that mutated NSCs
can migrate from the SVZ to other brain regions for seeding ma-
lignant lesions [15, 16].

The transformation of NSCs into GSCs may involve tumour
suppressor loss, such as p53 inactivation, together with acti-
vation of mitogenic signalling pathways. Mutant p53 in NSCs
accelerates oncogenic mutation accumulation, promoting
expansion of Olig2-positive progenitor-like cells and glioma
initiation [17]. Dysregulation of genes that govern cell cycle
control and mitotic progression in neural progenitors, such as
Aurora kinase A, Forkhead Box M1 FOXM1, and Diaphanous
related formin 3 DIAPH3, can induce chromosomal instabil-
ity and predispose to malignant transformation [15]. Multiple
experimental lines are converging on the idea that glioma
genesis depends on activation of proliferative pathways like
Ras and AKT in neural progenitors but not in differentiated
astrocytes to generate high-grade gliomas that resemble
human GBM [18]. Furthermore, signalling axes including
AKT and NOTCH are influencing prognosis, while GSCs
often show elevated WNT activity, enhanced neurosphere
formation, and upregulated SOX2 expression. Aberrant Wnt
B-catenin signalling promotes invasiveness and therapy resis-
tance partly through epithelial-mesenchymal transition that
is driven by FOSL1 upregulation. Spatial transcriptomics has
further demonstrated that NOTCH signalling is enriched in
mesenchymal-like GBM cells infiltrating the surrounding
brain tissue (Figure 1) [19].
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FIGURE 1 | Parallel representation of neurogenesis (left) and glio-
magenesis (right), illustrating the relationship between GBM cell states
and their cells of origin. Solid black arrows indicate normal differenti-
ation from NSCs through radial glia cells (RGCs) into lineage specif-
ic progenitors, oligodendrocyte progenitor cells (OPCs), astrocyte pro-
genitor cells (APCs), and neural progenitor cells (NPCs), which further
mature into their respective cell types. Dashed red arrows represent
malignant transformation from normal progenitors to GBM like coun-
terparts, OPC like, APC like, NPC like, and MES like, supported by sin-
gle cell RNA seq data. The MES like state shows a more distant similar-
ity to RGCs compared to the other states.

3 | Therapeutic Opportunities Targeting GSCs

GBM remains one of the most challenging malignancies to treat,
with curative strategies still out of reach. The standard of care
regimen consists of maximal safe surgical resection, adjuvant
RT, and chemotherapy with the alkylating agent temozolomide.
Although this multimodal approach modestly extends survival,
it is often accompanied by considerable systemic toxicity and di-
minished quality of life [20]. Moreover, intrinsic and acquired
resistance to treatment is common. Anti-angiogenic therapies,
such as the vascular endothelial growth factor (VEGF) target-
ing antibody bevacizumab, have improved progression-free
survival in some cases but failed to extend overall survival [21].
Treatment challenges are compounded by GBM's infiltrative
nature, which precludes complete tumour removal, and by the
blood-brain barrier, which restricts delivery of many systemic
agents [6]. To address these obstacles, current research is fo-
cused on:

1. Elucidating the molecular mechanisms driving tumour
growth, recurrence, and resistance.

2. Developing approaches to selectively target tumour cells
while sparing normal brain tissue.

3. Translating molecular insights into innovative surgical
and oncological strategies.
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4. Refining preclinical models to better predict clinical
outcomes.

5. Advancing personalised medicine in clinical trials.

A promising area of investigation involves targeting GSCs through
the manipulation of genetic and molecular pathways. Dysregulated
signalling cascades that promote proliferation, survival, and mi-
gration present opportunities for therapeutic intervention, while
tumour suppressive pathways may be harnessed to inhibit GSC
function. Receptor tyrosine kinases (RTKs), a family of trans-
membrane receptors, play central roles in regulating cell growth,
differentiation, motility, and metabolism [22]. Ligands such as
epidermal growth factor (EGF), fibroblast growth factor (FGF),
VEGF, platelet-derived growth factor (PDGF), transforming
growth factor (TGF), and hepatocyte growth factor (HGF) activate
RTKs, triggering dimerization or oligomerization and subsequent
autophosphorylation. These events initiate downstream signalling
through pathways including PI3K/AKT/mTOR, RAS/MAPK, and
JAK/STAT, ultimately promoting tumour cell proliferation and
invasion [23].

RTK activity is normally controlled by mechanisms such as
autoinhibition and tyrosine phosphatase activity; however, in
GBM, mutations, overexpression, or copy number alterations
can shift the balance towards oncogenesis [24]. Consequently,
numerous RTK inhibitors have been developed and tested in
GBM, with varied success. While certain agents, such as anlo-
tinib and regorafenib, have shown moderate benefits, many, in-
cluding dasatinib, pazopanib, and ponatinib, have demonstrated
limited efficacy in extending survival. Multi-target RTK inhib-
itors remain under evaluation, often in combination with other
modalities, as researchers seek to optimise strategies for disrupt-
ing RTK-mediated GSC proliferation and survival [15, 25].

3.1 | Targeting GSCs via Growth
Factor Receptor Signalling

Among the growth factor receptors implicated in GBM, epidermal
growth factor receptors (EGFRs) are the most frequently altered,
with approximately 60% of cases showing driver mutations, re-
arrangements, alternative splicing events, or gene amplifications.
Consequently, EGFR inhibition has long been a central focus of
therapeutic development in GBM [26]. Monoclonal antibodies
such as cetuximab and nimotuzumab, as well as small-molecule
tyrosine kinase inhibitors including gefitinib, erlotinib, dacomi-
tinib, osimertinib, and depatuxizumab mafodotin, have under-
gone extensive evaluation. Despite early promise, most agents
have demonstrated limited clinical benefit. For example, depatux-
izumab mafodotin did not improve overall survival in newly di-
agnosed patients with EGFR amplified tumours. Gefitinib, the
first EGFR inhibitor approved by the FDA, failed to show clinical
efficacy either alone or in combination regimens. Erlotinib, when
used alongside RT and temozolomide (TMZ), produced mixed
results in newly diagnosed GBM, though some studies reported
modest benefit in recurrent disease. Dacomitinib, a second-
generation inhibitor, showed preclinical efficacy but lacked a
significant clinical impact [27, 28]. The third-generation inhibitor
osimertinib has greater potency against EGFR, with case reports
and retrospective studies suggesting limited but notable benefit,

particularly when combined with bevacizumab. Overall, mono-
therapy with EGFR inhibitors has yielded suboptimal outcomes,
prompting interest in combinatorial approaches [29]. One emerg-
ing strategy involves cotargeting EGFR and the androgen receptor
(AR), given evidence that AR activation can occur independently
of hormonal ligands through EGFR signalling. AR expression
correlates positively with EGFR in GBM, and preclinical studies
have shown that the AR inhibitor enzalutamide, especially when
combined with afatinib, reduces GSC populations and improves
survival in animal models [30].

Fibroblast growth factor receptors (FGFRs) are altered in only
about 3% of GBM cases, yet specific rearrangements, such as fu-
sions between FGFR1 or FGFR3 and transforming acidic coiled
coil (TACC) proteins, produce constitutively active kinases that
drive tumorigenesis. FGFR3 is the most commonly affected
receptor through amplification or fusion events, while FGFR2
alterations are less frequent and often result in nonfunctional
chimeric proteins [19]. Nevertheless, rare cases of FGFR2 am-
plification with oncogenic fusion have been documented in
aggressive GBM. Development of FGFR inhibitors has been
slower than that of EGFR or VEGFR inhibitors, though several
multitarget tyrosine kinase inhibitors (e.g., erlotinib, sorafenib,
lapatinib, ponatinib, lucitanib, nintedanib) have shown some
FGFR activity. Selective FGFR inhibitors such as erdafitinib,
pemigatinib, and infigratinib are under investigation, with er-
dafitinib demonstrating tumour growth suppression in FGFR3
TACC3 fusion-positive GBM and pemigatinib inducing partial
responses in individual cases [31, 32]. The hepatocyte growth
factor receptor (HGFR, also known as c-Met) is activated by
hepatocyte growth factor/scatter factor and plays a key role in
GSC biology, despite amplification occurring in fewer than 5%
of GBM cases [15]. Selective inhibitors such as capmatinib have
shown minimal efficacy as monotherapy in PTEN-deficient
GBM but are being tested in combination with bevacizumab.
Crizotinib has shown encouraging results in early phase stud-
ies, with improved progression-free and overall survival when
added to standard chemoradiotherapy, and synergistic effects
when combined with EGFR inhibitors in preclinical mod-
els [33].

3.2 | Targeting GSCs via the PI3K/AKT/mTOR
Pathway

The PI3K/mTOR signalling axis integrates extracellular cues
such as nutrient availability, growth factors, and hormones to
regulate proliferation, survival, and metabolism. Upon activa-
tion, PI3K catalyses the production of PIP3, which recruits and
activates downstream kinases including PDK1 and AKT [34].
Activated AKT influences numerous cellular processes:

« Suppression of proapoptotic transcription factors (FOXO
family) and proteins (BAD, BAX, caspases 3/9) [35].

« Promotion of cell cycle progression via MDM2 mediated
p53 degradation and stabilisation of cyclin D1/D3 through
p27 and p21 regulation [36].

« Inhibition of glycogen synthase kinase 33 [37].

« Activation of IKKa and Tpl2, leading to NF-xB signalling [38].

4
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AKT also activates mTORC1, a major regulator of tumour
growth. Given that over 80% of GBM harbour alterations in
RTK/PI3K signalling, this pathway is a major therapeutic tar-
get. Inhibitors fall into several classes: dual PI3K/mTOR inhibi-
tors, pan PI3K inhibitors, isoform-selective PI3K inhibitors, and
mTOR-specific inhibitors [19]. Dual inhibitors such as dactoli-
sib, voxtalisib, and paxalisib have been evaluated in both pre-
clinical and clinical settings. Dactolisib, when combined with
chemoradiotherapy, showed antitumor activity in vitro and in
animal models, though monotherapy in mice was ineffective
and toxicities remain a challenge. Clinical trials for dactolisib
and voxtalisib have shown limited benefit, whereas paxalisib
has demonstrated more encouraging results in early trials for
both newly diagnosed and recurrent GBM [15, 39]. Pan PI3K
inhibitors, including buparlisib, pilaralisib, pictilisib, and sono-
lisib, have largely shown limited clinical efficacy, with toxicity
frequently limiting their use. Isoform-specific inhibitors, such
as the p110p selective agent GSK2636771, are in early clinical
evaluation, particularly for PTEN-deficient tumours [39]. mTOR
inhibition began with rapamycin, followed by its analogues
everolimus, temsirolimus, sirolimus, and ridaforolimus. Despite
good tolerability, these agents have generally failed to improve
survival, likely due to incomplete pathway blockade and lack of
mTORC?2 inhibition. Newer ATP competitive inhibitors target-
ing both mTORC1 and mTORC?2, such as vistusertib and torin
derivatives, are under preclinical study [40] (Figure 2).
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3.3 | Epigenetic Mechanisms in GSC Regulation

Epigenetic dysregulation in GBM includes altered DNA meth-
ylation, histone modifications, and chromatin remodelling,
all of which can promote oncogenesis or therapy resistance.
Global hypomethylation can activate oncogenes and destabi-
lise the genome, whereas promoter hypermethylation can si-
lence tumour suppressors, as observed with BCL2L11 (BIM)
in EGFR inhibitor-resistant GBM [41]. Methylation of the
MGMT promoter is a favourable prognostic factor and predicts
better response to TMZ. DNA methyltransferase inhibitors
such as decitabine and 5-azacytidine have shown the capac-
ity to alter methylation patterns, enhance immune recogni-
tion, and suppress tumour growth in preclinical models [42].
Histone modifications also regulate GSC biology. EZH2, a his-
tone methyltransferase within the PRC2 complex, represses
tumour suppressor genes and is implicated in GBM progres-
sion. Histone deacetylases (HDACS), particularly HDACS, in-
fluence GSC proliferation and drug resistance by modulating
EGFR trafficking, cytoskeletal organization, and downstream
signalling. HDAC inhibitors, including belinostat, panobi-
nostat, and vorinostat, have been tested clinically, but most
failed to demonstrate significant benefit as monotherapy or
in combination regimens [43]. Notably, valproic acid, a selec-
tive class I/1Ia HDAC inhibitor, has been associated with pro-
longed survival when used with standard chemoradiotherapy,
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FIGURE 2 | Key signalling pathways in glioma stem cells (GSCs) and their roles in tumour progression, stemness maintenance, angiogenesis,
invasion, and drug resistance. The diagram illustrates six major pathways: PI3K/AKT, Notch, Wnt, Sonic Hedgehog, NF kB, and JAK/STAT, each

contributing to the survival and aggressive behaviour of GSCs, highlighting their importance as potential therapeutic targets in GBM treatment.
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potentially by enhancing TMZ efficacy. Ongoing studies
are evaluating isoform-selective HDAC inhibitors for GBM
(Table 1) [44-47].

4 | GBM Is Extremely Challenging to Overcome

Despite extensive research and numerous clinical trials, thera-
peutic advances in GBM remain limited. Barriers include:

1. The infiltrative nature of GBM and the sensitivity of brain
tissue prevent complete surgical resection [19].

2. The restrictive blood-brain barrier limits drug delivery [6].
3. Alack of early detection tools and biomarkers [6].

4. The adaptability of GBM cells, which enables them to evade
therapy through molecular and phenotypic changes [7].

4.1 | Heterogeneity and Plasticity in GSCs

GBM is highly heterogeneous at genetic, transcriptional, and phe-
notypic levels, with GSCs serving as key drivers of this diversity.
Molecular subtypes, classical, proneural, and mesenchymal, are
defined by distinct driver mutations and exhibit different biolog-
ical behaviours and prognoses. Advances in single-cell sequenc-
ing have refined this classification, revealing malignant cell states
resembling neural progenitor-like, oligodendrocyte precursor-like,
astrocyte-like, and mesenchymal-like phenotypes [48]. GSCs also
display significant plasticity, transitioning dynamically between
cellular states in response to microenvironmental cues, therapies,
transcriptional programmes, and epigenetic changes. This flexibil-
ity enables therapy resistance and complicates targeting strategies.
Epigenetic modifications, such as methylation changes induced by
stressors like hypoxia or irradiation, can drive state transitions.
Transcriptomic shifts, mediated by transcription factors includ-
ing ASCL1, HESI1, OLIG2, and SOX2, further sustain stemness or
promote differentiation, depending on expression patterns [15, 49].

4.2 | Quiescence and Therapy Resistance

A subset of GSCs can survive in hypoxic, nutrient-deprived re-
gions by entering a quiescent, reversible GO state. These dormant
cells evade therapies that target rapidly dividing populations and
can later re-enter the cell cycle to drive recurrence. Quiescent
GSCs exhibit distinct molecular profiles and often adopt a
mesenchymal-like, migratory phenotype, facilitating tumour re-
population. Targeting pathways that regulate quiescence, such
as FOXG1/Wnt -catenin or BMP signalling, may improve treat-
ment efficacy. Strategies under investigation include forcing qui-
escent cells to re-enter the cell cycle for subsequent elimination or
maintaining them in a permanent dormant state [49, 50].

4.3 | Resistance to Therapy
4.3.1 | Resistance to Chemotherapy
Temozolomide (TMZ) remains the first-line chemotherapeu-

tic for GBM and has contributed to improved patient survival.
Nonetheless, resistance to TMZ is widespread and a major cause

of tumour relapse and treatment failure. TMZ acts by methylating
guanine at the O6 position during DNA replication, creating mis-
matches that lead to G2/M arrest and apoptosis [51]. Resistance
frequently arises from elevated activity of the DNA repair enzyme
06 methylguanine DNA methyltransferase (MGMT), which re-
moves the methyl group from alkylated guanine, restoring DNA
integrity and negating the drug's cytotoxicity. MGMT is markedly
upregulated in GSCs, conferring a strong innate resistance and
rendering these cells highly refractory to therapy. Within the tu-
mour core, hypoxic conditions cause fluctuating MGMT expres-
sion, further enhancing protection against TMZ [52].

Chemoresistance in GSCs can also involve cell-cycle modula-
tion, with extended G2/M arrest mediated by CHK1, CDC25C,
and CDC2, allowing additional time for DNA repair. Some
cells adopt a quiescent state under therapeutic stress, avoiding
cytotoxic damage; upon repair, they can re-enter the cell cycle
through activation of growth regulatory proteins such as CDK2
and E2F. Furthermore, TMZ-resistant GSC clones express
higher levels of antiapoptotic genes, including MCL1, BCL2, and
BCL2L1a, compared with differentiated tumour cells [53, 54].
Multidrug resistance (MDR) is another hallmark of GSCs, pri-
marily driven by overexpression of ATP-binding cassette (ABC)
transporters, which actively expel chemotherapeutic agents,
lowering their intracellular concentration [55]. ABCG2 (BCRP1)
is strongly expressed in GSCs and associated with a ‘side popu-
lation’ phenotype characterised by high efflux capacity and the
ability to survive therapy. MDR1 (Pglycoprotein) is also elevated
in GSCs, conferring resistance to agents such as doxorubicin
and etoposide. Combining chemotherapy with MDR inhibitors,
such as melatonin or perifosine, can enhance drug sensitivity
and therapeutic efficacy [13]. GSC chemoresistance is further
reinforced by the activation of signalling pathways, including
NOTCH and Sonic Hedgehog (SHH), in response to TMZ. This
activation increases the expression of downstream effectors like
NOTCH1 and GLI1. Pharmacological inhibition of these path-
ways with agents such as cyclopamine or ysecretase inhibitors
markedly enhances TMZ-induced cytotoxicity, offering a poten-
tial route to improve treatment outcomes [19].

4.3.2 | Resistance to Radiotherapy

RT is a mainstay in GBM management, yet radioresistance is a
frequent and formidable obstacle. Factors influencing tumour
cell survival after radiation include cell intrinsic properties,
radiation dose, and the surrounding microenvironment [56].
GSCs play a pivotal role in mediating resistance, enabling tu-
mour persistence, renewed proliferation, and recurrence. These
cells demonstrate preferential activation of DNA damage check-
points and superior DNA damage repair (DDR) capacity, medi-
ated by kinases such as CHK1 and CHK2. A delayed cell cycle
progression further enhances survival by allowing efficient
repair before cell division resumes [54]. This enhanced DDR
capacity presents a therapeutic vulnerability; inhibition of key
regulators such as ATM, ATR, CHK1, CHK2, and PARP1 can
sensitise GSCs to radiation. Overexpression of RAD51, another
critical DDR protein, facilitates repair of RT-induced double-
strand breaks in GSCs. Targeting RADS51 with inhibitors like
RI-1 or BO2 impairs DNA repair, depletes GSC populations, and
increases radiosensitivity (Table 2) [48, 58-65].
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5 | A Comprehensive Overview of Current Clinical
Trials

A variety of innovative approaches are being explored to en-
hance treatment options for GBM, particularly focusing on
immunotherapies and advanced therapeutic techniques. One
promising strategy involves using bispecific antibodies com-
bined with white blood cells to locate and destroy tumour cells
while sparing normal cells. A Phase I trial is currently assess-
ing the effectiveness of this combination for patients with
recurrent or refractory glioblastoma multiforme [1, 66, 67].
Another experimental treatment, referred to as TVI Brain
1, aims to harness ‘killer’ white blood cells to target cancer
cells. Previous Phase I studies have shown that this treatment
is safe and has prolonged survival in some patients. This has
led to a Phase II study designed to identify the most effective
vaccine components, utilising dendritic cells treated with tu-
mour lysate obtained during surgery [2, 68]. Additionally, a
single-centre Phase I study is investigating the safety of ad-
ministering autologous dendritic cells combined with tumour-
derived stem cells to patients with recurrent brain tumours.
Positive results could pave the way for a Phase II efficacy trial
[3, 69, 70].

In another approach, patients are being randomised to receive
nivolumab, either alone or in combination with dendritic cell
vaccine therapy, prior to surgical intervention. After surgery,
both groups will continue receiving DC vaccines and nivolumab
until disease progression is confirmed [4, 71, 72]. An open-label
Phase I study is also underway, examining the safety of com-
bining EGFRvIII-targeted CAR T cells with pembrolizumab, a
PD-1 inhibitor, for patients newly diagnosed with GBM. This
study aims to improve outcomes for this high-risk population
[5]. Moreover, researchers are evaluating a novel strategy in-
volving the use of oncolytic adenovirus delivered through neu-
ral stem cells in conjunction with radiation and chemotherapy,
seeking enhanced efficacy without increasing toxicity for newly
diagnosed malignant gliomas [6, 73]. A Phase I/II trial is also
focusing on the effects of combining temozolomide with stem
cell transplantation for newly diagnosed GBM patients, target-
ing the stopping of cancer cell growth while preparing for trans-
plantation. Research continues to determine the effectiveness
of high-dose versus intermediate-dose chemotherapy followed
by autologous stem cell transplantation, with some trials also
looking into the addition of isotretinoin to prevent recurrence
[7, 74, 75].

Finally, a clinical trial is exploring the use of genetically modi-
fied neural stem cells that convert 5-fluorocytosine into fluoro-
uracil directly at tumour sites, presenting a targeted approach to
treating high-grade gliomas [8]. Chemotherapy drugs like car-
boplatin, thiotepa, and etoposide operate through various mech-
anisms to halt tumour cell division, ultimately leading to cancer
cell death. Combining chemotherapy with autologous stem
cell transplantation may enable doctors to administer higher
doses of these drugs, thereby increasing tumour cell kill rates.
Additionally, isotretinoin has shown potential in preventing
glioma recurrence, but it remains unclear which chemotherapy
regimen, alone or combined with isotretinoin, is most effective
for treating recurrent high-grade glioma [9]. Furthermore, ge-
netically modified NSCs that can convert 5-fluorocytosine into

the chemotherapy agent fluorouracil directly at tumour sites
may represent a promising treatment avenue. This approach is
being explored in clinical trials involving patients undergoing
surgery for recurrent high-grade gliomas [10] (Table 3).

6 | Exploration of Future Strategies for GSC
Targeted Therapies

Identifying specific biomarkers associated with GSCs is crucial
for improving both diagnostic accuracy and therapeutic target-
ing. These biomarkers can be instrumental in personalising
treatment plans, allowing clinicians to select therapies tailored
to the molecular profile of individual tumours. Research into
extracellular vesicles (EVs) offers a promising avenue for bio-
marker discovery [76, 77]. EVs, which contain proteins, lipids,
and nucleic acids released by cells, can reflect the state of the
tumour microenvironment and the molecular profile of GSCs.
Analysing the content of EVs in bodily fluids, such as blood
or cerebrospinal fluid, could yield non-invasive biomarkers for
early detection, monitoring treatment response, and predicting
outcomes [76, 77]. Furthermore, understanding the interactions
between GSCs and the tumour microenvironment might reveal
new pathways that influence tumour behaviour and treatment
resistance [78]. For instance, components of the microenviron-
ment, such as specific cytokines or metabolic byproducts, could
act as indicators of GSC activity and provide additional thera-
peutic targets [79, 80].

The advent of CRISPR technology for gene editing opens up
innovative possibilities in targeted therapies for GBM. By spe-
cifically modifying GSC characteristics such as their prolifer-
ation rate, tumorigenicity, or resistance to existing treatments,
researchers can develop a deeper understanding of GSC biology
[79, 80]. For example, CRISPR can be employed to silence onco-
genic pathways that are critical for GSC survival and prolifera-
tion. By knocking out genes responsible for maintaining GSC
properties, researchers can explore how these cells adapt and
whether targeted therapies can be developed to exploit any new-
found vulnerabilities [80, 81]. Moreover, CRISPR technology
facilitates the creation of more accurate preclinical models of
GBM. By genetically engineering GSCs to mimic patient-specific
characteristics, researchers can test new drugs and combina-
tions in a more representative setting. Such models can yield
valuable insights into which therapies may be most effective in
real-world scenarios. Integrating artificial intelligence (AI) and
machine learning into GBM research has the potential to revolu-
tionise drug discovery and treatment strategies [82, 83].

AT can analyse large datasets, including genomic, proteomic,
and clinical data, to uncover patterns that may not be immedi-
ately apparent through traditional analysis methods. By lever-
aging AT algorithms, researchers can predict which compounds
are likely to interact effectively with GSCs [82, 83]. For instance,
machine learning models can sort through vast chemical librar-
ies to identify candidates that target specific biomarkers or path-
ways relevant to GSCs, thereby streamlining the development of
targeted therapies [84, 85]. Furthermore, AI can assess patient
data to identify subgroups that may respond uniquely to certain
treatments, enabling personalised approaches that optimise effi-
cacy and minimise side effects [84, 85]. This predictive capacity
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enhances the likelihood of successful treatment outcomes and
can inform clinical decisions more effectively than traditional
methods (Table 4).

7 | Perspectives and Future Directions

GSCsremain a formidable therapeutic target due to their hetero-
geneity, adaptability, and capacity to occupy hypoxic, invasive
niches. Their ability to adopt quiescent states enables survival
under conventional therapies. Stem cell-based strategies have
emerged as a promising avenue to circumvent these challenges.
Engineered NSCs, MSCs, and haematopoietic stem and pro-
genitor cells are among the most widely investigated platforms
[13, 86]. A key advantage of these cell types is their inherent
ability to home to sites of injury or tumour growth, including
hypoxic and deeply infiltrative regions inaccessible to many
therapies [87]. This tumour tropism is mediated by growth fac-
tors, chemokines, and inflammatory cues within the glioma
microenvironment. MSCs and NSCs can cross the blood-brain
barrier and integrate into tumour-associated vasculature, en-
abling perivascular migration and sustained intratumoral
presence. This targeting capability allows these cells to reach
quiescent GSCs in otherwise inaccessible niches and may over-
come the challenges posed by GBM heterogeneity [49].

Engineered stem cells also serve as versatile vehicles for gene
therapy, offering immune evasion and amenability to genetic
modification. Suicide gene therapy, in which stem cells are en-
gineered to express prodrug-activating enzymes such as herpes
simplex virus thymidine kinase (HSV TK), allows localised
conversion of prodrugs like ganciclovir into cytotoxic metab-
olites. This approach induces tumour-specific cell death, with
a bystander effect extending toxicity to adjacent tumour cells.

Dual suicide gene systems, such as HSV TK combined with cy-
tosine deaminase (CD), generate synergistic cytotoxic effects,
reduce the risk of resistance, and enhance safety by enabling
self-elimination of therapeutic cells after treatment [88, 89].

Advanced strategies include MSCs engineered to produce anti-
angiogenic proteins and radiation-activated proteins for com-
bined vascular disruption and targeted elimination. HSCs have
been modified to deliver TGFf inhibitors selectively to the GBM
microenvironment, augmenting the effects of RT and stimulat-
ing durable immune responses [90]. Additionally, MSCs can de-
liver oncolytic viruses to restore tumour suppressors such as p53
and PTEN, improving viral replication and distribution within
tumours. NSCs delivering replicating oncolytic adenoviruses
have shown potential in both newly diagnosed and recurrent
GBM [48]. The CXCL12-CXCR4 axis is a critical regulator of
tumour cell migration, dormancy, and therapeutic resistance
in GBM. Elevated CXCL12 in necrotic and angiogenic niches
attracts CXCR4-expressing stem cells, guiding their migration
towards invasive and hypoxic tumour zones. Engineering MSCs
to overexpress CXCR4 enhances tumour tropism [91]. Notably,
under TMZ stress, CXCL12-CXCR4 signalling modulates
GSC quiescence and reactivation, contributing to recurrence.
Targeting this axis with agents such as plerixafor has shown
success in mobilising dormant stem cells in other cancers, sug-
gesting dual utility in disrupting protective niches and guiding
therapeutic stem cells to resistant GSC populations [92, 93].
Human induced pluripotent stem cells (hiPSCs) offer an alterna-
tive platform with unlimited self-renewal, patient-specific com-
patibility, and greater genetic engineering flexibility compared
to MSCs and NSCs. Neural progenitors derived from hiPSCs,
when engineered with suicide genes, have demonstrated supe-
rior efficacy against GSCs compared to MSC-based approaches
(Figure 3) [94].

TABLE 4 | Summary of strategies for improving treatment outcomes in GBM.

Strategy Description Potential benefits References
Novel biomarkers Identification of specific biomarkers Improved diagnostic accuracy [78]
associated with GSCs, focusing on Personalised treatment plans non
extracellular vesicles and tumour invasive monitoring of tumour
microenvironment interactions. progression and response to therapy
CRISPR technology Utilisation of CRISPR for gene editing Enhanced understanding of GSC [80, 81]
to modify GSC characteristics or biology Development of therapies
silence oncogenic pathways and targeting key pathways More
create accurate preclinical models. representative models for drug testing
Artificial intelligence Integration of AT and machine learning Streamlined identification of effective [82, 83]
to analyse large datasets and uncover compounds Personalised treatment
patterns in drug discovery related to GSCs. approaches through predictive
analytics Improved patient outcomes
Combination therapies Exploration of synergistic effects Enhanced treatment efficacy [84]
between emerging therapies and Overcoming resistance
existing treatment modalities, such as mechanisms Potential reduction
immunotherapy and chemotherapy. in tumour recurrence and
improvement in survival rates
Immunology, 2026 11
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FIGURE3 | Overview of GSC traits and targeted therapeutic strategies in GBM.

8 | Discussion

The potential for tumorigenesis in stem cell-based therapies
remains a significant concern. Malignant transformation has
been observed in long-term cultures of bone marrow-derived
MSCs, with environmental factors such as oxygen tension
influencing transformation risk. Multipotent stem cells like
NSCs, MSCs, and HSCs are generally considered more stable
and safer for therapeutic use than pluripotent cells, including
embryonic stem cells (ESCs) and iPSCs [95]. MSC viability de-
pends on cell adhesion and communication, which are often
disrupted during isolation and transplantation. This disruption
can trigger anoikis, apoptosis resulting from detachment from
the extracellular matrix, reducing cell engraftment and per-
sistence [96]. Enhancing adhesion through biodegradable scaf-
folds or biomaterials may improve MSC retention and efficacy.
MSCs likely exert transient rather than permanent therapeu-
tic effects, and limiting their persistence could reduce long-
term risks. Treatment outcomes depend on factors such as cell
source, expansion protocols, administration route, dosing, and
genetic modifications [97].

The effects of MSCs on tumours vary across studies, influenced
by cell source and timing of administration. Some data suggest
adult MSCs may promote tumour growth when administered
concurrently with tumour cells, while delayed administration
may inhibit progression. This indicates that the stage of tu-
mour development is a critical determinant of MSC effects [98].

Finally, significant differences between preclinical models and
human GBM, particularly in vascularization and genetic het-
erogeneity, complicate the translation of laboratory findings to
clinical benefit. Bridging this gap requires more representative
models to improve the predictive value of preclinical research
and ultimately enhance treatment outcomes in patients with
GBM [99]. GSCs play a central role in therapeutic resistance
due to their heterogeneity, adaptability, and ability to occupy
inaccessible niches. Targeting GSCs is crucial for overcoming
immune evasion and enhancing treatment efficacy in GBM.
Stem cell-based delivery systems, such as engineered neural
stem cells and mesenchymal stem cells, show great promise
in this area. However, challenges remain, including poten-
tial tumorigenesis, variable effects depending on the tumour
stage, and the need for more representative preclinical models.
Addressing these limitations will be essential for translating
these strategies into effective therapies for GBM patients.
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