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Simple Summary

Brain tumors remain among the most difficult cancers to treat, largely because of their
biological complexity and the limited ability of many drugs to reach the brain. A major
molecular pathway that drives the growth of many brain tumors is the MAPK signaling
pathway. In this review, we explain how alterations in this pathway contribute to tumor de-
velopment in both children and adults, and we summarize current and emerging therapies
that specifically target this pathway. We also discuss the main challenges that limit treat-
ment success, including drug resistance, tumor diversity, and the protective blood–brain
barrier. By integrating recent advances in molecular biology with therapeutic strategies,
this work aims to guide future research and improve precision treatment approaches for
patients with brain tumors.

Abstract

Central nervous system (CNS) tumors consist of a diverse set of malignancies that remain
clinically challenging due to their biological complexity, high morbidity, and limited re-
sponsiveness to current therapies. A growing body of genomic evidence has revealed
that dysregulation of the mitogen-activated protein kinase (MAPK) signaling pathway is a
recurrent and unifying characteristic across many pediatric and adult CNS tumor entities.
Alterations affecting upstream receptor tyrosine kinases (RTKs), RAS GTPases, RAF kinases,
and other associated regulators contribute to MAPK signaling pathway hyperactivation,
shaping tumor behavior, therapy response and resistance. These aberrations ranging from
hotspot mutations such as BRAF V600E and oncogenic fusions like BRAF–KIAA1549 are
particularly enriched in gliomas and glioneuronal tumors, highlighting MAPK signaling as
a key oncogenic driver. The expanding availability of molecularly targeted compounds,
including selective inhibitors of RAF, MEK and ERK, has begun to transform treatment
approaches for specific molecular subtypes. However, the clinical benefit of MAPK-directed
therapies is frequently limited by restricted blood–brain barrier (BBB) penetration, intra-
tumoral heterogeneity, parallel pathway reactivation, and an immunosuppressive tumor
microenvironment (TME). In this review, we synthesize current knowledge on MAPK path-
way alterations in CNS tumors and evaluate the therapeutic landscape of MAPK inhibition,
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with emphasis on approved agents, emerging compounds, combination strategies, and
novel drug-delivery technologies. We also discuss mechanisms that undermine treatment
efficacy and highlight future directions aimed at integrating MAPK-targeted therapy into
precision-based management of brain tumors.

Keywords: MAPK signaling; brain tumors; RAF-MEK-ERK pathway; BRAF V600E muta-
tion; BRAF-KIAA1549 fusion; targeted therapy; RAF inhibitors; MEK inhibitors

1. Introduction
Central nervous system (CNS) tumors represent a heterogeneous group of both ma-

lignant and benign entities, characterized by varying clinical behavior, histological, and
molecular traits. In 2020, CNS tumors accounted for 1.6% of all cancer cases globally,
while in 2022, 321,624 new cases were estimated, corresponding to an age-standardized
incidence rate (ASIR) of 3.5 per 100,000 people [1]. Despite their relatively low incidence
rate, they impose a major disease burden due to their disproportionately high mortality
rates, especially among children [2,3]. The average lifespan for adults with glioblastoma,
the most aggressive type of brain tumor, is approximately 2 years [3]. A study utilizing
the global burden of disease (GBD) database predicted that the total number of cases
will gradually increase by 2040, even though the mortality rates in certain populations
may decrease slightly [4]. To date, the current established treatment approaches include
surgical resection, radiotherapy, and chemotherapy [5]. CNS tumors are characterized
largely by intratumoral heterogeneity which can be defined as the coexistence of genetically,
epigenetically, transcriptionally, and phenotypically distinct cell subpopulations within
the same tumor mass. This molecular heterogeneity of these tumors, their anatomical
location, in conjunction with the protective role of the blood–brain barrier (BBB) and in-
trinsic or acquired drug resistance, leads to limited treatment efficacy and poor clinical
patient outcomes. Importantly, children and young adults who survive by receiving the
standard of care experience long-term complications that largely affect their quality of
life [3]. Moreover, recent molecular profiling studies have revealed that pediatric and adult
gliomas constitute fundamentally distinct biological entities, driven by different oncogenic
alterations and signaling dependencies [6,7]. Consequently, there is a pressing need for
more targeted and personalized therapeutic strategies.

The mitogen-activated protein kinase (MAPK) signaling pathway plays a fundamental
role in cell physiology by regulating cell cycle, proliferation, survival, differentiation,
apoptosis, and is implicated in various other developmental processes [8]. Core components
of the MAPK pathway are serine/threonine-specific protein kinases, the mitogen-activated
protein kinases (MAPKs), that transduce intracellular signals through sequential protein
phosphorylation and activation events. Among them, the rapidly accelerated fibrosarcoma
(RAF), the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK),
and the extracellular signal-regulated kinase (ERK) form the RAF-MEK-ERK signaling axis,
the central and most thoroughly studied MAPK pathway [8,9] (Figure 1).
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Figure 1. Schematic overview of the MAPK/ERK signaling cascade. Ligand binding to receptor
RTKs, including EGFR, FGFR, PDGFR, ALK, ROS1, Trk, MET, and KIT, induces activation of RAS
(KRAS, NRAS, or HRAS) through the recruitment of adaptor proteins such as SHP2, GAB1, GRB2,
and SOS1. Active GTP-bound RAS, in turn, recruits and activates RAF kinases through dimerization
and phosphorylation, forming active BRAF homodimers or BRAF/CRAF heterodimers. RAF then
phosphorylates and activates MEK, which consecutively phosphorylates and activates the terminal
kinase ERK. Activated ERK translocates to the nucleus, where it phosphorylates transcription factors
and co-activators that regulate gene expression. RTK, receptor tyrosine kinase; EGFR, epidermal
growth factor receptor; FGFR, fibroblast growth factor receptor; PDGFR, platelet-derived growth
factor receptor; ALK, anaplastic lymphoma kinase; ROS1, ROS proto-oncogene 1; Trk, tropomyosin
receptor kinase; MET, mesenchymal–epithelial transition factor; KIT, kit proto-oncogene receptor
tyrosine kinase; RAS, rat sarcoma viral oncogene; KRAS, Kirsten rat sarcoma viral oncogene ho-
molog; NRAS, neuroblastoma rat sarcoma viral oncogene homolog; HRAS, Harvey rat sarcoma
viral oncogene homolog; SHP2, Src homology region 2 domain-containing phosphatase-2; GAB1,
GRB2-associated-binding protein 1; GRB2, growth factor receptor-bound protein 2; SOS1, Son of
sevenless homolog 1; RAF, rapidly accelerated fibrosarcoma; BRAF, V-Raf murine sarcoma viral
oncogene homolog B; CRAF, proto-oncogene c-Raf; MEK, mitogen-activated protein kinase; ERK,
extracellular signal-regulated kinase; GTP, guanosine triphosphate; GDP, guanosine diphosphate.
Created in BioRender. Adamopoulos, C. (2025) https://BioRender.com/haba8wa (Assessed on
7 September 2025).
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The MAPK pathway is usually activated upon binding of a ligand, such as a growth
factor, to a receptor tyrosine kinase (RTK), leading to its activation and the following
recruitment, intracellularly, of adaptor proteins/regulators, which in turn activate the
membrane-anchored small guanosine triphosphatase (GTPase), rat sarcoma virus oncogene
(RAS) [10] (Figure 1). Afterward, the active GTP-bound RAS recruits at the membrane and
activates RAF through a complex process of dimerization and phosphorylation events [11].
RAF then phosphorylates and activates its substrate MEK, which consecutively phospho-
rylates and activates ERK [12,13] (Figure 1). Finally, activated ERK phosphorylates its
targets, usually transcription factors or co-activators in the nucleus, thereby regulating the
expression of several genes [8,14].

RAS-RAF-MEK-ERK signaling axis deregulation, primarily due to its aberrant activa-
tion, is a key driver of carcinogenesis [15–18]. Mutations in key effectors of the pathway,
most frequently in RAS and RAF, have been identified in a wide variety of cancers, includ-
ing melanomas, lung, colorectal, and ovarian cancers [18–20].

Consequently, therapeutic efforts that target MAPK pathway components have led
to the approval by the Food and Drug Administration (FDA) of several small-molecule
inhibitors, while other alternative targeting approaches are under pre-clinical investigation
and development, including gene silencing, proteolysis-targeting chimeras (PROTACs),
and bispecific antibodies [8,21–23].

Notably, MAPK pathway component alterations have also been detected in primary
brain tumors. The most common alterations are the gene fusion between the BRAF and
KIAA1549 genes and the BRAF V600E mutation, both of which are most prevalent in
pediatric compared to adult tumors [24].

Beyond these, diverse genetic alterations involving RTKs, RAS, RAF kinases and
pathway regulators lead to the aberrant activation of the MAPK pathway and highlight its
central role in the pathogenesis of CNS tumors [8,25].

In this review, we provide a comprehensive overview of MAPK pathway alterations in
CNS malignancies, with emphasis on pediatric and adult gliomas, glioneuronal tumors, and
ependymomas. We summarize current strategies for MAPK pathway inhibition, including
BRAF, MEK, and ERK inhibitors, and discuss how these approaches are being integrated
into clinical management [26,27]. Furthermore, we address the major therapeutic challenges
that limit efficacy, including restricted BBB penetration, tumor heterogeneity and resistance
mechanisms, and the immunosuppressive tumor microenvironment [28,29]. Finally, we
highlight emerging treatment concepts and combinatorial approaches that hold promise
and shape future perspectives for MAPK-targeted therapy in brain tumors.

2. Central Nervous System (CNS) Tumors
Central nervous system (CNS) tumors can be classified as either primary, originating

from cell types within the brain and spinal cord, or metastatic, arising from tumors that
develop in distal organs, most commonly the lung and breast, and spread to the brain
through the bloodstream or the lymphatic system [30–32]. Primary CNS neoplasms depict
a heterogeneous group, consisting of gliomas, glioneuronal, neuronal, and ependymal
tumors [33]. Although relatively rare, tumors of the brain and other parts of the central
nervous system contribute substantially to morbidity and mortality across all age groups.
The frequency of these neoplasms is higher in children aged up to 5 years old, with most
being malignant gliomas, germ-cell, and embryonal tumors. In adults, malignant CNS
tumors, especially gliomas, are among the leading causes of death [31,34].

The basic criteria for the characterization of these entities have traditionally depended
on histological, immunohistochemical, and cytological observations, often linked to their
likeness to an alleged cell type of origin. The recognition of CNS tumors solely based on
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morphological features began to hinder the diagnosis of several subgroups and, hence,
proper treatment. Eventually, as described in the 5th edition of the World Health Or-
ganization (WHO) CNS tumor classification (CNS5, 2021), this obstacle was overcome
by incorporating molecular and genetic alterations into the diagnostic criteria. Accord-
ing to the current classification, six families of both benign and malignant tumors have
emerged, comprising adult-type diffuse gliomas, pediatric-type diffuse low-grade gliomas
(DLGG), pediatric-type diffuse high-grade gliomas (DHGG), circumscribed astrocytic
gliomas, glioneuronal/neuronal tumors, and ependymal tumors [33,35].

The implementation of molecular assays in their diagnosis, such as DNA/RNA se-
quencing, genome-wide methylation profiling, quantitative PCR (qPCR), and FISH, has
revealed a broad spectrum of genetic alterations in CNS tumors, encompassing point
mutations, insertions and deletions, copy number changes, and gene rearrangements [36].
The genes that are more frequently affected are vital to cellular homeostasis. For instance,
alterations in genes encoding for the phosphoinositide 3-kinase (PI3K), epidermal growth
factor receptor (EGFR), V-Raf murine sarcoma viral oncogene homolog B (BRAF), platelet-
derived growth factor receptor α (PDGFRA), and Met tyrosine-protein kinase (MET) lead
to defective receptor tyrosine kinase signaling. The regulation of the cell cycle is also
affected by mutations in the p53, retinoblastoma susceptibility (RB1), cyclin-dependent kinase 4
(CDK4), cyclin-dependent kinase inhibitor 2A and 2B (CDKN2A and CDKN2B), and v-myb avian
myeloblastosis viral oncogene homolog (MYB) genes. Moreover, genetic changes in telomerase
reverse transcriptase (TERT) and α-thalassemia intellectual disability X-linked (ATRX)
genes affect the preservation of telomere integrity. Additionally, modifications in histone
variants H3.1 and H3.3, predominantly the substitutions K27M and G34V/R, are implicated
in abnormal chromatin arrangement and epigenetic regulation of gene expression [35–38].
Cell metabolism is also affected through the production of oncometabolites, such as 2-
hydroxyglutarate (2-HG), which arises from mutations in the isocitrate dehydrogenase (IDH)
gene [39]. The mutations in IDH1 and IDH2 often co-exist with concurrent deletion of
chromosome arms 1p and 19q (1p/19q codeletion) and TERT alterations [40].

The treatment of CNS tumors continues to pose difficulties in both pediatric and
adult age groups. More specifically, several parameters need to be considered in terms
of tumor cell origin, location, genetic background, microenvironment and effective drug
delivery. The standard clinical strategies, so far, involve surgery, radiation, and chemother-
apy [30,41,42]. Over the last years, more targeted therapies, incorporating inhibitors,
chimeric antigen receptor-T (CAR-T) cells, and vaccines, among others, have emerged. Re-
garding glioblastoma multiforme (GBM), the most frequent and aggressive form of glioma,
immunotherapy may prove to be a promising treatment option [43]. Nonetheless, brain
tumors still represent one of the main causes of cancer-related mortality, while survivors
face a high risk of chronic health conditions, thus underscoring the pressing need for new
treatment modalities [42,44].

2.1. MAPK Pathway Alterations in CNS Tumors

Aberrant activation of the MAPK pathway is a hallmark of several CNS tumors,
frequently driven by genetic alterations such as point mutations, gene fusions, amplifica-
tions, or overexpression, most commonly involving RTKs, RAS, RAF, and regulators of the
pathway such as SHP2 and NF1 [22,45,46] (Figure 2).
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Figure 2. Representative alterations in the MAPK signaling cascade in central nervous system (CNS)
tumors. Distinct genetic mechanisms drive aberrant signaling at multiple levels: (i) RTK amplifica-
tions, mutations, and fusions (e.g., EGFR, PDGFRA, FGFR, MET, ALK, ROS1, NTRK); (ii) activating
RAS mutations in KRAS or NRAS, that impair GTP hydrolysis; (iii) oncogenic RAF alterations, most
notably in BRAF, which include fusions such as BRAF-KIAA1549 leading to constitutive activation,
hotspot substitutions like BRAF V600E conferring to the oncoprotein strong monomeric kinase ac-
tivity, and class III mutations (e.g., BRAF G464E, D594G) that produce kinase-impaired proteins
dependent on upstream RAS or RTK signaling; and (iv) alterations in negative or positive regulators
of MAPK signaling, such as NF1 LOF mutations and activating SHP2 mutations. Collectively, these
lesions converge on hyperactivation of the RAF–MEK–ERK axis, driving proliferation, survival,
and therapeutic resistance in CNS tumors. Solid red arrows depict activation and dashed arrow
depicts deactivation. EGFR, epidermal growth factor receptor; PDGFRA, platelet-derived growth
factor receptor α; FGFR, fibroblast growth factor receptor; MET, mesenchymal–epithelial transition
factor; ALK, anaplastic lymphoma kinase; ROS1, ROS proto-oncogene 1; NTRK, neurotrophic tyro-
sine receptor kinase; RAS, rat sarcoma viral oncogene; KRAS, Kirsten rat sarcoma viral oncogene
homolog; NRAS, neuroblastoma rat sarcoma viral oncogene homolog, Harvey rat sarcoma viral
oncogene homolog; RAF, rapidly accelerated fibrosarcoma; BRAF, V-Raf murine sarcoma viral onco-
gene homolog B; CRAF, proto-oncogene c-Raf; NF1, neurofibromin; SHP2, Src homology region
2 domain-containing phosphatase-2; MEK, mitogen-activated protein kinase; ERK, extracellular
signal-regulated kinase; LOF loss-of-function; GTP, guanosine triphosphate; GDP, guanosine diphos-
phate. Created in BioRender. Adamopoulos, C. (2025) https://BioRender.com/krxcp45 (Assessed on
7 September 2025).

2.1.1. Receptor Tyrosine Kinase (RTK) Alterations

RTKs are critical oncogenic drivers in gliomas, affected by diverse mechanisms, which
include point mutations, gene amplifications, and chromosomal rearrangements that create
fusion oncoproteins (Figure 2). These aberrations commonly confer ligand-independent
kinase activation, leading to persistent MAPK pathway signaling [47]. For instance, EGFR
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alterations, most notably gene amplification and the EGFRvIII deletion variant, are preva-
lent in GBM and drive aggressive proliferation and therapeutic resistance [48]. Similarly,
PDGFR-A amplification is characteristic of the proneural GBM subtype, while MET amplifi-
cation and PDGFR overexpression also contribute to glioma pathogenesis [49,50] (Figure 2).
Importantly, in pediatric gliomas, gene fusions involving anaplastic lymphoma kinase (ALK),
ROS proto-oncogene 1 (ROS1), neurotrophic tyrosine receptor kinase (NTRK2) and MET define
a distinct, hemispheric high-grade subgroup with intermediate prognosis [51]. Fibroblast
growth factor receptor (FGFR) gene family alterations, including FGFR3–transforming acidic
coiled-coil containing protein 3 (TACC3) fusions, constitute actionable drivers in a subset
(3–5%) of GBM, producing fusion proteins that promote oncogenesis [52].

In pilocytic astrocytomas (PAs), fusions of the NTRK2 gene, which encode for the
tropomyosin receptor kinase B (TrkB) with either the transcriptional repressor nucleus
Accumbens-associated protein 2 (NACC2), NACC2-NTRK2, or the pre-mRNA alternative
splicing regulator Quaking homolog KH domain containing RNA binding (QKI), QKI-
NTRK2, can induce MAPK pathway hyperactivity in a ligand-independent manner [53].
Additionally, in PA patients, the activating substitutions N546K and K656E in the FGFR1
gene have been linked to elevated phosphorylated/activated ERK levels [54]. In a small
number of infant-type hemispheric gliomas (IHGs), gene fusions involving ALK, NTRK1,
and ROS1 were detected without co-occurrence [54,55]. In the same study, a case of PA bore
a fusion of breakpoint cluster region (BCR) and NTRK2 genes (BCR-NTRK2), while a patient
with pleomorphic xanthoastrocytoma (PXA) harbored the tropomyosin 3 (TPM3)-NTRK1
fusion. Moreover, two cases of gangliogliomas exhibited the fusion FGFR3-TACC3 [54,55].

The localization of NTRK fusions varies depending on the fusion partner. Thus, when
the 5′ fusion partner encodes a membrane or extracellular protein, such as the protein
fusions of TrkA with the proteoglycan brevican (BCAN), BCAN–NTRK1, and the cell
surface protein neurofascin (NFASC), NFASC–NTRK1, the fusion protein is membrane-
associated (Type II) (Figure 2). Otherwise, when the fusion partners are cytosolic or nuclear,
such as TPM3, QKI, Ets variant transcription factor 6 (ETV6), localization is cytoplasmic
(Type I) (Figure 2). Yet all retain the NTRK kinase domain and drive constitutive MAPK
signaling [56]. In GBM, Golgi-associated PDZ and coiled-coil motif-containing protein
(GOPC)–ROS1 fusion proteins exhibit isoform-specific subcellular localization with the
long form localizing to the Golgi, while the short form is cytoplasmic [57].

2.1.2. RAS Alterations

All three RAS small GTPases, Kirsten rat sarcoma viral oncogene homolog (KRAS),
neuroblastoma rat sarcoma viral oncogene homolog (NRAS) and Harvey rat sarcoma viral
oncogene homolog (HRAS), function as molecular switches that alternate from their inactive
GDP-bound state to their active GTP-bound state (Figure 1). Oncogenic RAS mutations,
typically missense substitutions at hotspot codons 12, 13, or 61, largely impair intrinsic
GTP hydrolysis and lock RAS in its active form, resulting in constitutive downstream
signaling [58] (Figure 2). While RAS mutations are among the most common oncogenic
drivers in many cancers, they are relatively rare in gliomas. Nevertheless, accumulating
evidence indicates that RAS alterations can contribute to gliomagenesis across different
subtypes, either as point mutations or gene copy number gains, often cooperating with
other oncogenic events to sustain tumor growth and progression [59].

In two distinct cases of PXA, a KRAS mutation at codon 61 was detected, which codes
for glutamine in position 61 of KRAS protein [60]. More specifically, in one case, glutamine
was substituted by lysine (Q61K), while in the other, it was replaced by histidine (Q61H).
Interestingly, these two cases were the first in which a KRAS mutation was detected in PXA
patients [60]. Despite its rarity, a case of ganglioma with an NRAS mutation was reported
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among a heterogeneous group of 30 patients with infantile CNS tumors [54,55]. Oncogenic
missense mutations in KRAS and NRAS were present in 8 patients with IDH-mutant
astrocytomas, including G12A/D/V, G13D, D33E, A146T, and K117N substitutions. In the
same cohort, 3 tumor samples reported a high increase in KRAS gene copies [25,54,55].

2.1.3. MAPK Pathway Regulators Alterations

Beyond RTKs and RAS itself, several intracellular modulators of MAPK signaling are
altered in CNS tumors. The most relevant include neurofibromin (NF1) and the associated
sprouty-related EVH1 domain-containing protein 1 (SPRED1) and leucine zipper-like tran-
scription regulator 1 (LZTR1), and Src homology region 2 domain-containing phosphatase-2
(SHP2). NF1 acts as a tumor suppressor by accelerating RAS GTP hydrolysis, a process
facilitated by SPRED1, which recruits NF1 to the plasma membrane [24,61]. In PXAs,
NF1 mutations were reported in 3 of 13 cases, including two missense and one truncating
variant [58]. In IDH-mutant astrocytomas, NF1 alterations occurred in 17 of 27 cases, while
LZTR1 mutations (nonsense, frameshift, splice site, or missense) were also observed, con-
sistent with loss of its role in targeting RAS proteins, among others, for ubiquitin-mediated
degradation [62]. Inactivating SPRED1 lesions, including biallelic deletion and frameshift
changes, have also been described in this tumor type [24].

On the other hand, SHP2 is a positive effector that promotes MAPK pathway activation,
as it functions as an adaptor protein and phosphatase downstream of multiple RTKs
(Figure 1). Gain-of-function mutations, particularly E69K and E76A, enhance its activity,
facilitating sustained RAS/MAPK signaling in PA [54,63] (Figure 2).

2.1.4. RAF Alterations

Within the RAF family of serine/threonine kinases, BRAF is the predominant onco-
genic driver in cancers, including gliomas, followed less frequently by CRAF and only
rarely by ARAF. RAF proteins under physiological conditions signal as BRAF homodimers
or BRAF-CRAF heterodimers, constituting the most common and biologically relevant
signaling forms [64,65] (Figure 1). Oncogenic BRAF alterations, through gene fusions or
hotspot mutations, result in sustained constitutive downstream MAPK activation.

The most prevalent mutation in pilocytic astrocytomas is a genomic rearrangement
that leads to the fusion of the KIAA1549 and BRAF genes. The structural rearrangement
involves the duplication of a DNA segment between the KIAA1549 5′-end and BRAF 3′-end
genes in the 7q34 chromosomal region, spanning approximately 2 Mb. From this event,
five different in-frame variants have been identified: KIAA1549ex16-BRAFex9, KIAA1549ex15-
BRAFex9, KIAA1549ex19-BRAFex9, KIAA1549ex16-BRAFex11, and KIAA1549ex18-BRAFex10. All
the resulting chimeric proteins exhibit constitutive activation, as they all lack the N-terminal
domain responsible for the autoregulation of BRAF, due to substitution from KIAA1549.
At the same time, they maintain the kinase domain of BRAF [66–69]. Interestingly, in a
small cohort of PAs several other fusion partners have been identified for BRAF, including
family with sequence similarity 131 member B (FAM131B), ring finger protein 130 (RNF130),
chloride voltage-gated channel 6 (CLCN6), makorin ring finger protein 1 (MKRN1), guanine
nucleotide-binding protein subunit alpha-11 (GNA11), quaking homolog KH domain RNA
binding protein (QKI), fizzy and cell division cycle 20 related 1 (FZR1), microtubule actin
crosslinking factor 1 (MACF1), and general transcription factor II-I (GTF2I). Although
biologically and functionally disparate, these fusion partners render domains that converge
on the same outcome: hyperactivation of BRAF and its downstream signaling [24,54,70,71].

Regarding BRAF mutations, the second most common alteration detected in PAs is a
substitution of valine in position 600 by glutamic acid, which results in BRAF V600E the
most frequent BRAF mutation in human cancers [69,72,73]. This point mutation disrupts
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the regulatory conformation of BRAF, resulting in loss of its N-terminal autoinhibitory
domain and conferring monomeric kinase activity with hyperactivation of the MAPK
pathway (Figure 2) [72,73]. BRAF V600E is observed across several glioma subtypes. In
a study by Zou et al., who evaluated mutations in a cohort of 13 PXA patients using
next-generation sequencing, the BRAF V600E mutation was present in 38% of the cases [60].
In a comprehensive analysis of 30 infantile (<12 months old) CNS tumors, 7/10 cases of
desmoplastic infantile ganglioglioma (DIG) harbored alterations in BRAF (5 mutations, 1
duplication and 1 fusion), 1/2 cases of PXA carried the CAP-Gly domain containing linker
protein 2 (CLIP2)-BRAF fusion, 1/2 cases of PA had the KIAA1549-BRAF fusion, and a single
case of DLGG was BRAF V600E-mutant [55]. Tumors from 3 young-adult patients with
IDG-mutant astrocytomas possessed a rare in-frame protein tyrosine phosphatase receptor type
Z1 (PTPRZ1)-BRAF gene fusion and two class III BRAF mutations, the substitutions G464E
and D594G [25]. G464E affects the kinase domain of BRAF, producing a kinase-impaired
protein that requires RAS activation, whereas D594G affects the activation segment of BRAF,
resulting in a kinase-dead protein, both relying on upstream RAS/RTK activity [74,75].

In the context of chimeric proteins, the gene encoding CRAF protein (CRAF or RAF1)
has been observed to fuse either with the nuclear transcription factor 1A (NF1A) or SLIT-
ROBO Rho GTPase activating protein 3 (SRGAP3) gene in some rare PA case reports at
chromosomal regions 1q31.3 and 3p25, respectively. The end-product of both translocations
is an oncoprotein that augments constitutive MAPK pathway activation [68,76].

Alterations are not limited to BRAF. In the study of Tauziède-Espariat et al.,
2/30 infantile patients with tumors characterized as DIGs carried CRAF fusions, particu-
larly one of these cases presented with the protein kinase cAMP-dependent type II regula-
tory subunit a (PRKAR2A)-RAF1 fusion [55]. CRAF fusions have been described in rare PAs,
involving the nuclear transcription factor 1A (NF1A) or SLIT-ROBO Rho GTPase activating
protein 3 (SRGAP3) as fusion partners [68,76]. In infantile DIGs, CRAF fusions have also
been identified, including a protein kinase cAMP-dependent type II regulatory subunit
α (PRKAR2A)-CRAF chimera [55]. Additional RAF1 fusions, contributing to constitutive
MAPK activity, have been documented across gliomas and other tumor types [77].

3. RAS/MAPK Pathway Inhibitors in CNS Tumors
The high frequency of activating mutations and other genetic alterations in the

RAS/RAF/MEK/ERK signaling axis and its subsequent hyperactivation has highlighted
their association with cancer development and progression [78]. Consequently, compo-
nents of this pathway have become promising therapeutic targets through their selective
inactivation by small-molecule inhibitors. In addition, alternative medicinal chemistry
strategies with the development of PROTACs or molecular glues have emerged. All these
targeting efforts have been directed towards CNS tumors as well [79].

3.1. RAF Inhibitors

The high frequency of the BRAF V600E mutation, accounting for 95% of all BRAF
mutations, and the increased kinase activity of the BRAF V600E oncoprotein made it an
ideal pharmacological target for small-molecule inhibitors. This led to the development
of the first- and eventually the more selective second-generation RAF inhibitors targeting
the mutant-BRAF kinase [72,73]. The increased selectivity for the monomeric mutated
BRAF versus the dimeric wild-type BRAF is the basis of the high therapeutic index of the
second-generation RAF inhibitors [74]. These discoveries resulted in the FDA’s approval
of vemurafenib in 2011 and dabrafenib in 2013, as single agents, for the treatment of
metastatic BRAF V600E-mutant melanoma [72,73]. Since then, combination therapies using
the RAF inhibitors vemurafenib, dabrafenib and encorafenib, along with the MEK inhibitors
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trametinib, cobimetinib and binimetinib or the EGFR inhibitor cetuximab, have gained
FDA approvals in subsequent years for other types of cancer, harboring the BRAF V600E
mutation [72,73,80]. However, the effectiveness of these monomer-selective RAF inhibitors
is often hindered by the development of adaptive resistance, primarily mediated by the
formation of RAF dimers, through MAPK-pathway reactivation because of the relief of
negative feedback or via secondary genetic alterations [72–74]. To overcome the dimer-
forming resistance mechanisms, next-generation RAF inhibitors that target the dimeric
form of RAF have been developed [72–74]. Recently, one such inhibitor, tovorafenib, was
clinically approved for treating pediatric patients with low-grade glioma (LGG) carrying
genetic alterations in the BRAF gene [26].

3.1.1. Vemurafenib

Vemurafenib is a selective BRAF V600E inhibitor that competes with ATP binding,
thus preventing downstream MEK activation. It exhibits limited penetration across the BBB,
which restricts its efficacy in primary brain tumors (Table 1) [81]. Initially approved for
metastatic melanoma, vemurafenib has shown partial efficacy in BRAF-mutant gliomas in
case series and small trials [82–84]. Responses tend to be short-lived due to the development
of adaptive resistance and insufficient CNS concentrations. Common adverse effects include
rash, joint pain, fatigue and paradoxical activation of wild-type BRAF leading to secondary
malignancies like squamous cell carcinoma [82–84].

Table 1. MAPK pathway inhibitors in central nervous system (CNS) tumors: molecular targets,
tumor indications, and representative clinical outcomes. LGG, low-grade glioma; HGG, high-grade
glioma; PXA, pleomorphic xanthoastrocytoma; GBM, glioblastoma multiforme; NF1, neurofibromin;
OP, optic pathway; NF1-MPNST, NF1-associated malignant peripheral nerve sheath tumor; PN,
plexiform neurofibroma; ORR, overall response rate; PFS, progression-free survival; FDA, Food and
Drug Administration; BBB, blood–brain barrier; CNS, central nervous system; TMZ, temozolomide.

Drug/Strategy Molecular Target(s) CNS Tumor Type(s) Key Clinical Findings Selected Trials

Dabrafenib + Trametinib BRAF V600E + MEK1/2 Pediatric LGG,
HGG, PXA, GBM

ORR > 70% in BRAF V600E pLGG;
significant PFS improvement;

FDA-approved for pLGG (2023)

NCT07110246,
NCT03919071

Vemurafenib BRAF V600E Glioma, PXA
Partial responses;

limited durability due to resistance;
modest BBB penetration

NCT01748149

Encorafenib
(+ MEK inhibitors) BRAF V600E Glioma (investigational)

Improved pharmacodynamics vs.
vemurafenib; CNS efficacy

under study
NCT03973918

Selumetinib MEK1/2 NF1-associated pLGG,
OP glioma

Tumor shrinkage and visual
improvement; durable

disease control;
FDA-approved for NF1 tumors

NCT01089101,
NCT03871257

Trametinib MEK1/2 pLGG, NF1 tumors,
PXA

Clinical benefit in pLGG and PNs;
enhanced efficacy with dabrafenib NCT03363217

Mirdametinib MEK1/2 NF1 tumors, pLGG
Recently FDA-approved for

NF1-associated PN; promising
CNS activity

NCT04923126

Tovorafenib RAF Relapsed pLGG with
BRAF alterations

High response rate;
effective in BRAF-fusion tumors;

FDA-approved 2024

FIREFLY-
1/NCT04775485

NST-628 RAF-MEK
molecular glue

RAS/RAF-mutant
gliomas

Potent, brain-penetrant MAPK
suppression; preclinical efficacy Preclinical

Ulixertinib ERK1/2 Advanced glioma
(investigational)

Activity in BRAF/MEK-resistant
tumors; BBB penetration NCT01781429

SHP2 inhibitors (TNO155,
RMC-4630) SHP2 GBM,

NF1-MPNST
Suppress upstream RAS activation;

synergy with TMZ * NCT03114319

* Chemotherapy drug (alkylating agent).
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3.1.2. Dabrafenib

Dabrafenib is another selective BRAF V600E inhibitor with superior BBB penetration
and a more favorable safety profile compared to vemurafenib [85]. Clinical trials have
demonstrated that dabrafenib is effective in pediatric patients with BRAF-mutant LGGs,
leading to tumor regression and improved progression-free survival [86]. On 16 March
2023, dabrafenib combined with the MEK inhibitor trametinib gained FDA approval
for pediatric BRAF V600E-mutant LGGs (Table 1) [86]. This synergistic regimen shows
improved tolerability, with fewer secondary skin malignancies when used in combination
therapy. Patients may exhibit pyrexia, fatigue, skin rash and arthralgia [87].

3.1.3. Encorafenib

Encorafenib is a newer first-generation BRAF V600E inhibitor developed to reduce
paradoxical activation and enhance the duration of response [88]. While it is primarily used
in melanoma and colorectal cancer, preclinical studies are investigating its use in brain
tumors [89]. Although encorafenib features a longer dissociation half-life from BRAF V600E
and potentially better pharmacodynamic suppression of MAPK signaling, its efficacy in
CNS tumors may be limited by its lower BBB penetration (Table 1) [90].

3.1.4. NST-628

NST-628 is a non-degrading molecular glue that binds to both RAF and MEK proteins,
stabilizing their complex in a way that prevents MEK phosphorylation by RAF, effectively
blocking downstream signaling [91]. This mode of action avoids resistance mechanisms
common in traditional kinase inhibitors. NST-628 inhibits all RAF isoforms (ARAF, BRAF,
CRAF) and works across multiple RAS- and RAF-mutant cancers, including those resistant
to existing therapies. Unlike many inhibitors, NST-628 is brain-penetrant, making it
potentially effective against CNS tumors (Table 1). The compound induces long-lasting
suppression of the MAPK pathway in both in vitro and, also, in vivo models, including
mouse xenografts and organoids derived from human tumors. As a result, due to its broad
activity, resistance-evasion capacity, and brain penetration, NST-628 shows promise for
treating a wide range of RAS- and RAF-driven CNS cancers, including those with KRAS,
NRAS, or BRAF mutations [91].

3.2. MEK Inhibitors

Selective MEK inhibitors have been developed to effectively block the MAPK pathway
activation, especially after its reactivation due to the relieved negative feedback mechanisms
following BRAF inhibitor therapy [72–74]. Thus, combinatorial targeting of MEK inhibitors
(trametinib, cobimetinib, binimetinib) with RAF inhibitors (vemurafenib, dabrafenib, enco-
rafenib) has been FDA-approved, from 2014 to 2018, for patients with metastatic melanoma,
non-small cell lung cancer (NSCLC), and anaplastic thyroid cancer carrying the BRAF
V600E mutation [72,73,92–94]. In 2021, the FDA approved the MEK inhibitor selumetinib
for pediatric patients with neurofibromatosis type 1, a genetic disorder in which NF1
loss predisposes to peripheral nerve sheath tumors and other cancers (Table 1) [95,96].
Most MEK inhibitors disrupt the formation of the RAF-MEK complex, inhibiting MEK
phosphorylation and activation [97].

3.2.1. Selumetinib

Selumetinib is an allosteric MEK inhibitor that prevents ERK activation and has demon-
strated significant efficacy in NF1-associated pLGGs [98], as well as in non-NF1-associated
pLGGs [99], including disease stabilization and, in some cases, prolonged disease control
(Table 1). Furthermore, it is an orphan drug designation for NF1-altered gliomas [100].
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Generally, it is well tolerated in children, but adverse effects, like gastrointestinal symptoms,
skin rash, rare cardiomyopathy and ocular toxicity may arise [98–100]. Ongoing clinical
trials comparing selumetinib with conventional chemotherapy in both NF1-associated and
non-NF1 pLGG will further clarify its therapeutic value and long-term safety. Notably,
emerging evidence indicates that a subset of patients can maintain durable progression-free
survival (PFS) even after treatment cessation, underscoring the potential of MEK inhibition
as a promising disease control strategy [99,100].

3.2.2. Trametinib

Trametinib is a potent selective allosteric MEK inhibitor, often used in combination
with dabrafenib [92–94,97,101]. Approved in combination for BRAF V600E-mutant tu-
mors, trametinib enhances efficacy and reduces adverse effects such as secondary skin
cancers [92–94,101,102]. Current results from an ongoing clinical trial demonstrate signif-
icant clinical benefit to the majority of both pLGG and plexiform neurofibromas (PNs)
patients, including measurable responses and prolonged PFS (Table 1) [102]. Common
adverse effects are diarrhea, skin rash, fatigue, and hypertension [102].

3.2.3. Binimetinib and Cobimetinib

The MEK inhibitors binimetinib and cobimetinib have been tested primarily in non-
CNS malignancies but are currently under investigation in gliomas [89]. Ongoing trials
are evaluating their BBB permeability and potential in combination with BRAF and mTOR
inhibitors, supported by favorable pharmacokinetics and CNS bioavailability [103]. Binime-
tinib is currently under clinical investigation in brain tumors, including high-grade glioma
(HGG) [89]. Cobimetinib provided efficacy when tested in combination with vemurafenib
in a refractory case of BRAF V600E-mutated ganglioglioma [104]. Its role in neuro-oncology,
however, remains to be fully defined. Given their pharmacologic profiles, both agents repre-
sent promising candidates for rational combination strategies targeting multiple signaling
pathways in gliomas.

3.2.4. Mirdametinib

Mirdametinib is an orally bioavailable MEK inhibitor that has recently achieved its
first regulatory approval in the United States for the treatment of symptomatic, inoper-
able NF1-associated PNs in both adult and pediatric patients (Table 1) [105]. Beyond
neurofibromatosis type 1, ongoing trials are evaluating its efficacy in pLGGs and other
RAS/MAPK-driven tumors, providing a rationale for its potential application in primary
brain tumors [105,106]. With established clinical activity in NF1-associated CNS tumors
and a favorable oral dosing profile, mirdametinib represents a promising candidate for
expanding MEK-directed strategies in neuro-oncology [105,106].

3.3. ERK Inhibitors

Although mutations in ERK proteins are rare, selective ERK inhibitors are under
preclinical development, given that ERK is the terminal kinase of the RAS/RAF/MEK/ERK
signaling cascade, seeking a more durable inhibitory response [107]. These agents are
particularly promising in tumors that develop resistance to BRAF and/or MEK inhibitors.

Ulixertinib (BVD-523)

Ulixertinib is an oral, ATP-competitive ERK inhibitor that has demonstrated preclinical
efficacy in various tumor models, including those resistant to BRAF and MEK inhibitors.
Phase I clinical trials have shown acceptable tolerability and preliminary antitumor activity
in patients with advanced solid tumors harboring MAPK pathway alterations. In gliomas,
its ability to cross the BBB and suppress ERK-driven transcription makes it a promising
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candidate, although its application is under exploration (Table 1) [108]. Elevated liver
enzymes, diarrhea and fatigue are the main observed side effects of this drug [108].

3.4. SHP2 Protein Inhibitors

Alongside direct targeting of the RAS/RAF/MEK/ERK axis components, selective in-
hibitors have been developed against the SHP2 phosphatase (e.g., TNO155 and RMC-4630),
which block upstream activation of RAS by inhibiting the GRB2-SOS1 interaction [109]
(Figure 1). Specifically, a study has shown that SHP2 inhibition, using the SHP2 inhibitor
SHP099, could efficiently reduce RAS-GTP loading, block RAS-mediated RAF/MEK/ERK
signaling and abrogate tumor growth in NF1-malignant peripheral nerve sheath tumors
(MPNSTs) (Table 1) [110]. Furthermore, combining SHP2 inhibition treatment with hy-
droxychloroquine (HQ), a pharmacological inhibitor of autophagy, showed enhanced
effectiveness in mouse and human NF1-MPNST models [110]. Additionally, Sang and
colleagues examined the efficacy of SHP099 in GBM with activated PDGFR-A. SHP099
exhibited antitumor activity either as a single agent or in combination with temozolo-
mide (TMZ) and provided significant survival benefits for GBM tumor xenograft-bearing
animals [111].

3.5. Combinatorial Therapies

Combined inhibition of multiple MAPK pathway components enhances treatment
efficacy and reduces the risk of resistance or overcomes the already developed adaptive
resistance [72,74,97,112,113]. BRAF plus MEK inhibitor is the most validated combination,
especially in GBM and in pediatric LGG [114,115]. It delays resistance, lowers toxicity, and
provides better PFS compared to monotherapy. Furthermore, ongoing trials are exploring a
multi-combinatorial strategy of BRAF, MEK, and AKT inhibitors [116,117]. Lastly, MAPK
inhibitors could combine with immunotherapy, given that MAPK inhibition may increase
immune recognition, making combination with immune checkpoint inhibitors (ICIs) a
promising therapeutic avenue [118,119].

3.6. Clinical Application and Efficacy
3.6.1. Pediatric Low-Grade Glioma (LGG)

Pediatric LGGs are the most frequent pediatric brain tumors and are characterized by
indolent growth but can cause significant morbidity. Molecular profiling has revealed that
most of these tumors harbor MAPK pathway alterations. The combination of dabrafenib
and trametinib has demonstrated remarkable efficacy in pediatric LGGs with BRAF V600E
mutations [101,114,115]. In clinical trials, response rates exceeded 70%, and the combination
was associated with PFS and tolerable side effects [114,115]. Selumetinib has also shown
clinical benefit in NF1-associated pediatric LGGs [98]. Results from Phase II trials indicated
that selumetinib led to tumor shrinkage and visual improvement in children with optic
pathway gliomas [99,100].

3.6.2. High-Grade Glioma (HGG)

In HGG, the MAPK pathway is often only one of many dysregulated networks, and
monotherapy with BRAF or MEK inhibitors has generally been less effective [120]. How-
ever, in select cases, such as BRAF V600E-positive GBM, targeted therapies have resulted in
durable responses [101,121]. Combination therapy is currently under active investigation
in clinical trials, including regimens that pair MAPK inhibitors with other targeted or
immunotherapeutic agents [122,123]. Specifically, Arbour and colleagues reported an 18-
year-old female with a grade III PXA treated upfront with dabrafenib and trametinib [122].
Also, Fusco et al. describe a similar case of a 19-year-old male patient with grade III PXA,
who achieved durable PFS with BRAF and MEK inhibitors combination [123].
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3.6.3. Ganglioglioma

Gangliogliomas are usually low-grade brain tumors containing both neuronal and
glial elements, most often occurring in children and young adults. A large proportion of
these tumors harbor activating mutations in the MAPK signaling pathway, particularly
BRAF V600E, which renders them responsive to MEK inhibitors [124]. Nonetheless, some
gangliogliomas lack identifiable MAPK pathway alterations and therefore have not tra-
ditionally been considered candidates for MEK-targeted therapy. Interestingly, a recent
report described a young adult patient with ganglioglioma who did not carry MAPK
pathway mutations but achieved a marked and durable response to the MEK inhibitor
trametinib [125].

3.6.4. Medulloblastoma

Medulloblastoma is a common malignant pediatric brain tumor. While existing
treatments can be effective, they often cause significant long-term side effects [126]. A
major clinical challenge is resistance to therapy and recurrence, often driven by tumor
stem-like cells [127]. The protein BMI1, a known regulator of stem cell renewal and
tumorigenesis, is overexpressed in medulloblastoma and supports tumor growth [128].
A study investigates whether targeting BMI1, alone or in combination with MAPK/ERK
pathway inhibitors, could be an effective treatment strategy against medulloblastoma [129].
The study used the PD325901, a MEK inhibitor that blocks ERK phosphorylation, as the
MAPK/ERK pathway inhibitor in combination with BMI1 inhibition to evaluate synergistic
effects on medulloblastoma cells [129].

3.7. Current and Ongoing Clinical Trials

Several ongoing clinical trials assess the MAPK inhibition in different CNS tumor
types (Table 2). Selectively, some of them include the evaluation of the dabrafenib plus
trametinib combination in pLGGs [114], which paved the way for the FDA approval of
this combination for treatment, the investigation of the effectiveness of selumetinib in NF1-
associated gliomas [96], and the study of the role of tovorafenib in relapsed pLGG with
BRAF alterations (FIREFLY-1/NCT04775485) [130]. These studies are refining indications,
dosing and combinations, and will help define future standard-of-care approaches.

Table 2. Current and ongoing clinical trial assessing certain MAPK inhibitors, as single agents or in
combinations, for central nervous system (CNS) tumors. LGG, low-grade glioma; HGG, high-grade
glioma; HQ, hydroxychloroquine; NF1, neurofibromin; PN, plexiform neurofibroma; OP/HG, optic
pathway/hypothalamic glioma; PA, pilocytic astrocytoma.

Agent (Target) Tumor Type Age Study Name/
Clinical Trial ID Stage

Dabrafenib * and trametinib ± BRAF V600-mutant pLGG 12 months–25 years old NCT07110246 Phase II

Dabrafenib * and trametinib Several CNS tumors 1–99 years old NCT03975829 Phase IV

Dabrafenib, trametinib ± and nivolumab ⊥ BRAF-altered pediatric glioma 1–26 years old NCT06712875 Phase I/II

Dabrafenib * and trametinib ± HGG (among other cancer types) 18–100 years old NCT03340506 Phase IV

Dabrafenib * and trametinib ± HGG 3–25 years old NCT03919071 Phase II

Dabrafenib, trametinib ± and HQ ∝ LGG or HGG with BRAF aberration
LGG with NF1 1–30 years old NCT04201457 Phase I/II

Mirdametinib ± LGG 2–24 years old NCT04923126 Phase I/II

Mirdametinib ± LGG, activation of MAPK 2–24 years old NCT06666348 Phase I/II

Selumetinib ± Recurrent/refractory LGG, OP/HG glioma,
NF1, PA 3–21 years old NCT01089101 Phase I/II

Selumetinib ± Progressive LGG 2–25 years old NCT04576117 Phase III

Selumetinib ± NF1, LGG 2–21 years old NCT03871257 Phase III

Selumetinib ± LGG 2–21 years old NCT04166409 Phase III
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Table 2. Cont.

Agent (Target) Tumor Type Age Study Name/
Clinical Trial ID Stage

Trametinib ± LGG 1 month–25 years old NCT05180825 Phase II

Trametinib ± LGG, NF1, PN, activation of the MAPK/ERK
pathway 1–25 years old NCT03363217 Phase II

Trametinib ± and everolimus ∇ LGG, HGG 1–25 years old NCT04485559 Phase I

Tovorafenib * Relapsed/refractory LGG with BRAF
alterations 6 months–25 years old FIREFLY-

1/NCT04775485 Phase II

* RAF inhibitor, ± MEK inhibitor, ⊥ anti-programmed cell death-1 (PD1) monoclonal antibody, ∝ autophagy
inhibitor, ∇ mammalian target of rapamycin (mTOR) inhibitor.

4. Therapeutic Challenges of Targeting the MAPK Pathway in
Brain Tumors
4.1. Blood–Brain Barrier (BBB) and Drug Delivery Limitations

The therapeutic management of intracranial tumors such as gliomas, meningiomas,
pituitary adenomas and craniopharyngiomas is limited by the presence of both the BBB
and the blood–tumor barrier (BTB). BBB’s fundamental role through its high selectivity
is to maintain cerebral homeostasis, but at the same time, it restricts the entry of many
pharmacological agents, especially large or hydrophilic molecules [131–133]. In contrast,
the BTB, which arises from abnormal tumor-induced angiogenesis, displays heterogeneous
permeability [134]. This results in uneven intratumoral drug distribution, particularly in
aggressive tumors such as GBM and craniopharyngiomas. These anatomical and physio-
logical characteristics affect the uniform delivery and eventually the efficacy of systemically
administered drugs [28,135]. Thus, effective brain tumor treatment requires the develop-
ment of compounds that both target oncogenic signaling pathways and, at the same time,
achieve adequate penetration through the BBB. However, even small, lipophilic molecules
can fail to accumulate sufficiently in the CNS due to active efflux mechanisms mediated by
ATP-binding cassette (ABC) transporters, which include the P-glycoprotein (P-gp/ABCB1)
and breast cancer resistance protein (BCRP/ABCG2) [136,137]. Such transporters are lo-
cated at the BBB/BTB interface and within tumor cells and contribute to chemoresistance by
actively extruding therapeutic agents from the brain parenchyma [138]. Importantly, ABC
transporter expression is heterogeneous across tumor subtypes and can be upregulated in
response to treatment. For instance, exposure to doxorubicin has been demonstrated to
induce the expression of multiple transporters, such as P-gp, BCRP, MRP-1, -2, -3, and -6, in
gliomas, further compounding resistance [139].

Many RTK inhibitors, including erlotinib, gefitinib, and afatinib, are known substrates
of P-gp and BCRP, restricting their CNS bioavailability [140–142]. Certain compounds, such
as sunitinib and sorafenib [143], and third-generation EGFR inhibitors, such as osimertinib,
rociletinib, and HM61713, demonstrate improved BBB penetration and activity against
resistance mutations like EGFR T790M challenges persist [142]. Similar pharmacokinetic
barriers are encountered with RAF inhibitors, like vemurafenib and dabrafenib, and MEK
inhibitors like trametinib, cobimetinib, binimetinib, selumetinib and pimasertib, many of
which are subject to efflux via P-gp and BCRP. Other MEK inhibitors such as PD0325901 and
E6201 have shown favorable BBB permeability in preclinical studies [144,145]. Furthermore,
newer-generation RAF inhibitors, including dabrafenib, encorafenib, and the molecular
glue, dual RAF-MEK inhibitor NST-628, have demonstrated enhanced CNS distribution,
thus improving their therapeutic usage in intracranial malignancies [87,89,91]. Compounds
that target KRAS G12C, like sotorasib and adagrasib, and ERK, like ulixertinib, are in active
clinical evaluation. However, their pharmacokinetic properties and association with efflux
transporters are not yet defined [108,146,147]. Several innovative drug delivery strategies
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are currently being explored, including nanoparticles, focused ultrasound-mediated BBB
disruption and convection-enhanced delivery [28].

4.2. Tumor Heterogeneity and Resistance Mechanisms in MAPK Pathway-Targeted Therapies

Genetic alterations in the MAPK signaling pathway vary across different brain tumor
types, affecting disease progression and therapeutic response. Hyperactivating mutations
such as BRAF V600E and BRAF–KIAA1549 fusions are frequently observed in pediatric
and adult low-grade gliomas, such as PAs, gangliogliomas, and PXAs [54,148]. Mutations
in genes including ROS1, ALK, NF1, KRAS, MEK, and CRAF have been identified across
glioma subtypes, highlighting the necessity for molecular classification beyond traditional
histopathology [35,149,150]. Additionally, fusions involving FGFR and NTRK family genes
and fusions and amplifications in ALK, ROS1, and MET, have been detected predomi-
nantly in pediatric brain tumors [51,151,152]. Mutations in PIK3CA and AKT1 are fre-
quent in meningiomas, whereas activating mutations affecting the RAS/RAF/MEK/ERK,
PI3K/AKT, and Wnt pathways have been described in pituitary adenomas [153,154]. Apart
from primary CNS tumors, genetic alterations within the MAPK pathway, such as RTK
and BRAF mutations, are often observed in brain metastases originating from lung, breast,
and melanoma primary cancers [155]. Despite the considerable therapeutic advances of
the MAPK pathway-directed targeted therapies, their clinical success is frequently lim-
ited by the development of drug resistance [22,156]. These resistance mechanisms often
include compensatory activation of parallel signaling cascades like PI3K/AKT/mTOR
pathway [72,157,158]. Furthermore, reactivation and/or hyperactivation of the MAPK path-
way through the relief of negative feedback loops upon treatment with MAPK inhibitors,
fosters epigenetic reprogramming by inducing expression of key transcription factors asso-
ciated with cellular stemness and mesenchymal transition. This process involves chromatin
remodeling, enhancer reconfiguration, and rewiring of the transcription factor network,
including the transcription factors SOX2, OLIG2, STAT3, KLF4, and NOTCH, promoting
therapeutic evasion and adaptive resistance [72–74,157–160].

4.3. Tumor Microenvironment (TME)

The TME functions as a dynamic ecological system that actively shapes tumor evo-
lution, therapeutic response, and resistance through complex and reciprocal interactions
between tumor cells and their surrounding stromal and immune compartments [161].
Genetic and epigenetic alterations influence the transcriptional and secretory programs
of cancer cells, thereby reprogramming the TME, which in turn contributes to the emer-
gence of resistance to MAPK pathway inhibitors. Certain oncogenic mutations in both
the RAS/MAPK and PI3K/AKT signaling pathways can support an immunosuppressive
TME [162,163]. Moreover, in GBM, elevated levels of phosphorylated ERK have been
associated with an increased TME infiltration by M2-type tumor-associated macrophages
(TAMs) [164]. This altered microenvironment corresponds to “cold tumors,” characterized
by minimal infiltration of immune cells and poor response to immunotherapies [165]. More-
over, sustained MAPK pathway activation can induce a senescence-associated secretory
phenotype (SASP) that further modifies the TME, promoting the secretion of cytokines,
chemokines and growth factors that enhance cancer cell viability and foster therapeutic re-
sistance [166]. In BRAF V600E-mutant HGG, dual BRAF and MEK inhibition affects glioma
plasticity, promoting an immunomodulatory phenotype with elevated PD-L1 expression
and improving the synergy with ICIs [167]. Furthermore, TME can drive resistance upon
combinatorial BRAF inhibitor and ICI treatment in brain metastatic acral melanoma [168].
A comprehensive understanding of the effects of the MAPK pathway inhibition in TME,
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along with tumor cells, will allow the rational design of novel therapeutic strategies suitable
for brain tumors [29].

4.4. Toxicities Associated with MAPK Pathway Inhibitors

Targeted inhibition of the MAPK signaling cascade has significantly improved clinical
outcomes in subsets of brain tumor patients. However, it is often associated with adverse ef-
fects and toxicities that affect treatment tolerability and limit long-term utilization [169–177].
BRAF inhibitors such as dabrafenib and vemurafenib are most commonly associated with
cutaneous toxicities, including follicular or acneiform eruptions, xerosis, fatigue, and pho-
tosensitivity. While most dermatologic side effects are mild and manageable, treatment
discontinuation may be required in cases of severe toxicity [169–172]. MEK inhibitors,
including trametinib and selumetinib, also frequently cause dermatologic adverse events
(rash, xerosis, paronychia). In addition, systemic toxicities such as fatigue and cardiovas-
cular complications, including hypertension and bradycardia, have been reported. Given
the risk of cardiotoxicity, especially in pediatric patients with CNS tumors, routine cardiac
monitoring is strongly recommended [173,174]. Trk inhibitors, such as larotrectinib and
entrectinib, target aberrant activation of Trk receptors resulting from NTRK gene fusions.
Although generally well tolerated, these compounds have been linked to a spectrum of
adverse effects, including gastrointestinal symptoms such as nausea, vomiting, diarrhea,
hepatotoxicity, peripheral edema, cutaneous rashes, cardiac dysfunction, and neurological
effects including dizziness, headache, and peripheral neuropathy [152,175–177].

5. Conclusions
The therapeutic targeting of the MAPK signaling pathway has clinical benefits in

various CNS tumors, particularly in pLGGs that express the BRAF V600E mutation [113].
Monotherapy with BRAF or MEK inhibitors is often associated with drug resistance and sub-
stantial toxicities, while combination strategies, especially dual inhibition of RAF and MEK,
have demonstrated superior efficacy [97,170]. For instance, the dabrafenib–trametinib com-
bination has received FDA approval for BRAF V600E-mutant low-grade gliomas [154,178].
Drug resistance is frequently caused by reactivation of the RAF/MEK/ERK axis and alter-
native escape mechanisms from MAPK inhibition such as enhanced PI3K/AKT/mTOR
signaling [79]. As a result, current efforts in preclinical models and early-phase clinical
trials (e.g., NCT02023905, NCT02133183) focus on multi-targeted strategies, combining
MAPK pathway inhibitors with inhibitors targeting parallel signaling pathways such as
PI3K/AKT/mTOR. Resistance to MAPK inhibition may also arise through mechanisms
that bypass the main signaling pathway, including activating mutations in PI3KC, AKT-
mediated feedback loops, PTEN loss, mTOR upregulation, and autophagy-associated
survival responses [22]. Therapeutic approaches focus on modulating apoptosis, disrupting
tumor-associated metabolic reprogramming, regulating autophagy, and inhibiting phe-
notypic plasticity to enhance treatment efficacy [22,179–181]. Novel strategies aiming to
reverse the immunosuppressive TME [182]. In this context, current approaches include
the assessment of CAR T cells targeting tumor-associated antigens such as IL-13Rα2 and
EGFRvIII, as well as inhibitors of PD-1/PD-L1 axis [183,184]. Consistently, PD-L1 overex-
pression in GBM has been associated with poor clinical outcomes [184–186]. Blockade of
PD-1/PD-L1 interaction aims to suppress the PD-1-mediated inhibitory signaling, restore
cytotoxic T-cell function and enhance anti-tumor immunity [187]. Current clinical trials
assessing combinatorial immunotherapies involving ICIs, CAR T cells, and anti-angiogenic
drugs (e.g., bevacizumab), showing promising preliminary results [28,188,189]. Combina-
tion approaches involving immunotherapies with MAPK pathway inhibition are being
evaluated mostly to overcome resistance mechanisms [189,190]. Cytokine therapies are
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being explored for their potential to reactivate immune function within the TME. Such
therapies have shown promise in augmenting immune responses without significant tox-
icities [188,191,192]. Moreover, inhibitors focused on metabolic reprogramming at the
IDH1/2-mutant gliomas are under investigation [193]. Possible synergies of all these strate-
gies with MAPK pathway inhibition in certain contexts could be proven highly beneficial,
providing both sustained tumor suppression and enhanced TME immunomodulation.

Despite meaningful progress, the clinical management of high-grade brain tumors,
such as GBM, continues to be hindered by tumor heterogeneity, adaptive resistance mech-
anisms, and the restrictive nature of the BBB. Moving forward, multimodal therapeutic
strategies that address both the tumor and its surrounding microenvironment, along with
personalized molecular profiling, will be critical for improving survival outcomes. The
future of MAPK-targeted therapy in CNS tumors lies in precision medicine, with treatment
paradigms tailored to each patient’s unique molecular and immunological landscape.
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LZTR1 leucine zipper-like transcription regulator 1
MACF1 microtubule actin crosslinking factor 1
MAPK mitogen-activated protein kinase
MEK mitogen-activated protein kinase extracellular signal-regulated kinase
MET met tyrosine-protein kinase
MKRN1 makorin ring finger protein 1
MPNST malignant peripheral nerve sheath tumor
MRP multidrug resistance-associated protein
MYB v-myb avian myeloblastosis viral oncogene homolog
NACC2 nucleus Accumbens-associated protein 2
NF1 neurofibromin
NF1A nuclear transcription factor 1A (NF1A)
NFASC neurofascin
NOTCH neurogenic locus notch homolog
NRAS neuroblastoma rat sarcoma viral oncogene homolog
NTRK neurotrophic tyrosine receptor kinase
OLIG2 oligodendrocyte transcription factor 2
PA pilocytic astrocytoma
PD-1 programmed cell death-1
PDGFR-A platelet-derived growth factor receptor A
PD-L1 programmed death-ligand 1
PFS progression-free survival
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PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
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PTPRZ1 protein tyrosine phosphatase receptor type Z1
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ROS1 ROS proto-oncogene 1
RTK receptor tyrosine kinase
SASP senescence-associated secretory phenotype
SHP2 Src homology region 2 domain-containing phosphatase-2
SOX2 SRY-box transcription factor 2
SPRED1 sprouty-related EVH1 domain-containing protein 1
SRGAP3 rho GTPase activating protein 3
STAT3 signal transducer and activator of transcription 3
TACC3 transforming acidic coiled-coil containing protein 3
TERT telomerase reverse transcriptase
TME tumor microenvironment
TMZ temozolomide
TPM3 tropomyosin 3
TrkB tropomyosin receptor kinase B
WHO world health organization
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