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Abstract 28 

Background: 29 

Glioblastoma (GBM) is a highly aggressive brain tumor with profound metabolic heterogeneity. 30 

However, a clinically actionable classification based on metabolic gene expression remains undefined. 31 

Methods: 32 

We conducted a comprehensive multi-omics analysis of IDH-wildtype GBMs from three publicly 33 

available datasets. Prognostic metabolism-related genes were used to define transcriptional subtypes, 34 

which were validated in independent datasets and patient-derived cell (PDC) models. Functional assays 35 

and drug sensitivity studies were performed to explore therapeutic relevance. 36 

Results: 37 

We identified three distinct metabolic subtypes: M1, enriched for synaptic signaling and amino acid 38 

metabolism, exhibited leading-edge anatomical features; M2, characterized by mitochondrial 39 

metabolism and cell cycle activity, was associated with favorable survival; and M3, marked by hypoxia, 40 

immune activation and suppression, and broad metabolic pathway engagement, correlated with poor 41 

prognosis. These subtypes were reproducible across cohorts and faithfully recapitulated in PDC models. 42 

Metabolomic profiling confirmed distinct subtype-specific metabolic signatures. Notably, M3 cells 43 

showed high sensitivity to inhibitors targeting glycosaminoglycan degradation, nicotinamide 44 

metabolism, and retinoic acid pathways in both in vitro and in vivo models. 45 

Conclusion: 46 

Our study defines three biologically and clinically relevant metabolic subtypes of IDH-wildtype GBM. 47 

This classification reveals distinct metabolic programs and therapeutic vulnerabilities, providing a 48 

framework for precision metabolism-targeted strategies in glioblastoma. 49 

Keywords: Glioblastoma, Molecular subtype, Metabolic profiling, Prognosis, Multi-omics 50 
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Key Points 51 

1. Multi-omics analysis identified three metabolic subtypes of IDH-wildtype glioblastoma with 52 

distinct biology, prognosis, and therapeutic targets. 53 

2. Subtype-specific vulnerabilities suggest new precision strategies for metabolism-targeted 54 

glioblastoma treatment. 55 

 56 
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Importance of the Study 72 

Glioblastoma (GBM) remains one of the most lethal brain tumors, with limited treatment options and 73 

poor prognosis. Current molecular classifications do not adequately capture the tumor’s metabolic 74 

complexity or guide targeted therapies. This study defines three robust metabolic subtypes of IDH-75 

wildtype GBM through integrative multi-omics analysis across large patient cohorts and patient-derived 76 

models. Each subtype exhibits distinct biological characteristics, prognostic outcomes, and metabolic 77 

dependencies. Importantly, the most aggressive subtype (M3) demonstrates specific vulnerabilities to 78 

metabolic pathway inhibitors, offering actionable insights for therapy. This classification provides a 79 

clinically relevant framework to stratify patients and tailor metabolism-targeted treatments, paving the 80 

way for more effective and personalized approaches in GBM management. 81 

 82 

 83 
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Introduction 94 

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Despite multimodal 95 

treatment, including maximal resection, radiotherapy, and chemotherapy, GBM typically recurs, and 96 

the median overall survival remains under two years.1-3 According to the 2021 World Health 97 

Organization (WHO) classification of central nervous system (CNS) tumors, GBM is defined as a 98 

diffusely infiltrative IDH-wildtype glioma, characterized by necrosis, microvascular proliferation, or 99 

specific molecular alterations, such as TERT promoter mutation, EGFR amplification, and the combined 100 

gain of chromosome 7 with loss of chromosome 10.4,5 A major obstacle to effective therapy is the 101 

pronounced heterogeneity of GBM, which spans genomic, transcriptomic, and metabolic dimensions. 102 

Metabolic reprogramming is a hallmark of cancer,6,7 and in GBM, metabolic plasticity is especially 103 

prominent.8 GBM cells frequently exhibit aerobic glycolysis (Warburg effect), redirecting glucose 104 

metabolism to support the biosynthesis while maintaining ATP production.9 Additionally, these cells 105 

increase their pools of lipids, amino acids, and nucleotides through a combination of extracellular uptake, 106 

de novo synthesis, supporting growth via oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, 107 

and the pentose phosphate pathway.10 These insights highlight the critical role of tumor metabolism in 108 

GBM biology. 109 

Several molecular classification systems have been proposed based on transcriptional profiles,11,12 110 

immune features,13 or pathway activity.14 Integrating transcriptomic and metabolomic data offers a 111 

promising approach to dissect tumor heterogeneity and define metabolic subtypes.15-17 However, how 112 

to stratify GBM patients based on metabolic gene expression and translate this into therapeutic insights 113 

remains an open question. 114 

Here, we leverage multi-omics datasets to identify three robust GBM metabolic subtypes based on 115 

transcriptional profiles of metabolic genes. These subtypes show distinct metabolic gene expression 116 

signatures, genomic alterations, clinical outcomes, and sensitivities to various metabolic inhibitors, 117 

providing a potential framework for metabolism-targeted precision therapies in GBM. 118 
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Methods 119 

Study cohorts 120 

This study included cohorts of IDH-wildtype glioblastoma patients from three publicly available 121 

datasets: The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Clinical 122 

Proteomic Tumor Analysis Consortium (CPTAC). The TCGA cohort consisted of 139 patients with 123 

RNA sequencing data, among whom 110 had DNA methylation data, and 133 had data on copy number 124 

alterations (CNAs) and somatic mutations. The CGGA cohort included a total of 361 GBM patients, 125 

comprising 98 with microarray data and 263 with RNA-seq data. The CPTAC cohort consisted of 92 126 

GBM patients, all of whom had RNA-seq and proteomic data, with 69 also having matched metabolomic 127 

data. A summary of the patients across all cohorts, along with their pathological features, is provided in 128 

Supplementary Table 1. Genomic, transcriptomic, and clinical data from the TCGA cohort were 129 

downloaded from the National Cancer Institute Genomic Data Commons 130 

(http://cancergenome.nih.gov).18 Expression and clinical data for the CGGA cohorts were obtained from 131 

the CGGA portal (http://www.cgga.org.cn).19 Genomic, transcriptomic, proteomic, metabolomic, and 132 

clinical data from the CPTAC cohort were accessed via the CPTAC data portal 133 

(https://proteomics.cancer.gov/programs/cptac).20 Transcriptomic data of PDCs from ref.14 are available 134 

at Synapse (accession no. syn22314624). All RNA-seq data were downloaded in FPKM format, log2-135 

transformed, and standardized prior to subtype classification. Informed consent and ethical approval for 136 

all patient data used in this study were previously obtained and are documented in the respective 137 

databases.  138 

Metabolic expression subtype classification 139 

The TCGA cohort was used as the discovery dataset to identify metabolic subtypes of glioblastoma. 140 

Metabolism-related genes were obtained from previously published studies,16,21 and genes with 141 

prognostic significance were identified using the R package “survival”. Unsupervised clustering was 142 

then performed using the consensus clustering algorithm implemented in the R package 143 
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“ConsensusClusterPlus”,22,23 with 80% sample subsampling over 1,000 iterations and a maximum 144 

cluster number (k) set to 10. Cluster robustness was assessed both visually, through the consensus matrix 145 

heatmap, and quantitatively, using the cumulative distribution function (CDF) curves and the relative 146 

change in area under the CDF curve for each k value. To validate the identified clusters in independent 147 

cohorts, a partition around medoids (PAM) classifier was constructed using the R package “pamr”. Each 148 

GBM sample in the validation cohorts was assigned to a metabolic subtype based on the highest Pearson 149 

correlation with the centroid of each cluster and the lowest associated P-value.24 The similarity and 150 

reproducibility of metabolic subtypes between the TCGA and validation cohorts were further evaluated 151 

using the in-group proportion (IGP) statistic, implemented via the R package “clusterRepro”.25 152 

Clinical relevance analysis of metabolic expression subtypes 153 

Detailed analytical processes were described in Supplementary Methods. 154 

Biological pathway association and differential expression analysis 155 

See details in Supplementary Methods.  156 

Immune microenvironment analysis 157 

To characterize the immune microenvironment across metabolic expression subtypes, multiple 158 

computational approaches were employed. The ESTIMATE algorithm26 was used to infer the immune 159 

and stromal content in each GBM sample based on gene expression profiles. CIBERSORT27,28 was 160 

applied to estimate the relative proportions of various immune cell types from bulk RNA sequencing 161 

data. In addition, single-sample gene set enrichment analysis (ssGSEA) was conducted using the R 162 

package “GSVA”29 to calculate enrichment scores for predefined immune-related gene signatures in 163 

each sample. 164 

Calculation of metabolic pathway enrichment score 165 

To assess metabolic heterogeneity across the identified subtypes, enrichment analysis of metabolic 166 

pathways was performed. A total of 113 metabolism-related gene signatures were obtained from 167 
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previously published studies.30 The enrichment score for each metabolic pathway in each sample was 168 

calculated using the ssGSEA method, based on transcriptomic data. 169 

Anatomic enrichment analysis 170 

To evaluate the anatomic features among metabolic subtypes, enrichment analysis was performed with 171 

the signatures from Ivy glioblastoma atlas project (IvyGAP)31 and Patel et al.32 The scores were 172 

calculated using the ssGSEA method. 173 

Differential analysis of metabolite profiling data in CPTAC GBM samples 174 

Metabolite profiling data from 69 GBM patients were obtained from the CPTAC database20 and used 175 

to investigate metabolic differences among the identified subtypes. See details in Supplementary 176 

Methods. 177 

Somatic driver association analysis 178 

To identify oncogenic events potentially responsible for metabolic reprogramming, associations 179 

between somatic drivers, including mutations and copy number variations (CNVs), and metabolic 180 

expression subtypes were analyzed using data from the TCGA cohort. See details in Supplementary 181 

Methods. 182 

Cell lines and culturation 183 

All patient-derived cells (PDCs) used in this study were previously established and characterized.33 See 184 

details in Supplementary Methods. 185 

Compounds 186 

Detailed information was shown in Supplementary Methods. 187 

In vitro cell viability assay 188 

Detailed experimental steps were described in Supplementary Methods. 189 

Apoptosis assay 190 

D
ow

nloaded from
 https://academ

ic.oup.com
/neuro-oncology/advance-article/doi/10.1093/neuonc/noaf294/8413488 by guest on 18 January 2026



N-O-D-25-00901R1 
 

9 
 

Annexin V-FITC/PI (BD Pharmingen) staining was performed according to the manufacturer’s 191 

protocols. See the Supplementary Methods for details. 192 

NAD+ and retinoic acid concentration measurement 193 

Detailed experimental steps were described in Supplementary Methods. 194 

β-Hexosaminidase activity assay 195 

The activity of β-hexosaminidase was detected using beta Hexosaminidase Activity Assay Kit (Cell 196 

Biolabs). Detailed experimental steps were described in Supplementary Methods. 197 

Orthotopic xenografting and drug treatment 198 

The general protocol for establishing intracranial glioblastoma models was described previously.23 199 

Detailed experimental steps were described in Supplementary Methods. 200 

RNA sequencing and data processing of PDCs 201 

See the Supplementary Methods for details. 202 

Metabolites profiling and data analysis of PDCs 203 

Metabolomic analysis was performed on 17 patient-derived cell (PDC) lines with available 204 

transcriptomic data. See the Supplementary Methods for details. 205 

Statistical analysis 206 

All computational and statistical analyses were performed using R software, SPSS 16.0 (IBM, Chicago, 207 

IL, USA), or GraphPad Prism 6.0 (GraphPad Inc., San Diego, CA, USA). For comparisons between two 208 

groups, the unpaired Student’s t-test was used for normally distributed data, while the Wilcoxon rank-209 

sum test was applied for non-normally distributed data. For comparisons among three or more groups, 210 

one-way ANOVA was used for normally distributed variables. P-values were adjusted for multiple 211 

testing using the Benjamini-Hochberg method. Two-sided P-values < 0.05 were considered statistically 212 

significant.  213 
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Results 214 

Metabolic-Expression-Based Stratification of IDH-wildtype Glioblastomas 215 

To uncover the metabolic heterogeneity of IDH-wildtype glioblastomas, we performed an unbiased 216 

classification based on previously reported metabolism-related genes.16,21 The overall workflow of the 217 

study is illustrated in Figure 1A, and the clinical characteristics of patients from all cohorts are 218 

summarized in Supplementary Table 1. We first filtered metabolism-related genes to retain those 219 

significantly associated with prognosis in the TCGA cohort using univariate survival analysis. Based 220 

on these prognostic genes, consensus clustering identified three robust metabolic subtypes, designated 221 

M1, M2, and M3, as supported by the consensus matrix and the cumulative distribution function (CDF) 222 

curve (Figure 1B and Supplementary Figure 1A-C). Principal component analysis (PCA) further 223 

validated the clustering, confirming distinct expression patterns across subtypes (Figure 1C). We next 224 

explored the clinical relevance of the subtypes. Chi-square tests revealed no significant associations 225 

between subtype classification and clinical features such as age, gender, or MGMT promoter status. 226 

However, when comparing with previously reported transcriptomic subtypes,11,12,14 M3 subtype was 227 

significantly associated with mesenchymal and GPM subtypes, while NEU and MTC subtypes are 228 

enriched in our M1 and M2 groups, respectively (Figure 1D and Supplementary Table 2). To further 229 

characterize the subtypes, we assessed the anatomic enrichment using the features from the IvyGAP,31 230 

including leading edge (LE), cellular tumor (CT), pseudopalisading cells around necrosis (PAN), and 231 

microvascular proliferation (MVP). Subtype M1 exhibited higher LE enrichment, M2 was enriched in 232 

CT features, while M3 showed strong association with PAN and MVP (Figure 1E). In line with this, 233 

applying signatures from Patel et al,32 M2 subtype had higher enrichment of cell cycle, whereas M3 234 

subtype displayed high level of hypoxia (Figure 1F). To assess the prognostic value of the metabolic 235 

subtypes, we performed Kaplan-Meier survival analysis and log-rank testing, which revealed significant 236 

differences in overall survival among the subtypes. Subtype M2 was associated with the most favorable 237 

prognosis, followed by M1 and M3 (Figure 1G, Supplementary Figure 1D). Multivariate Cox 238 
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regression analysis further confirmed that M2 was an independent predictor of better survival, even after 239 

adjusting for age (Supplementary Table 3). 240 

  To evaluate the robustness of our classification, we performed consensus clustering on a randomly 241 

selected half of the TCGA samples. Again, three clusters were identified, with one cluster showing 242 

enrichment of the mesenchymal subtype and another associated with improved survival. These newly 243 

generated clusters were highly concordant with the original subtype classification (Supplementary 244 

Figure 1E-H). 245 

  We further validated the reproducibility of our classification using expression data from independent 246 

cohorts: CGGA and CPTAC. Subtype assignment in these cohorts was performed using a centroid-247 

based classifier with Pearson correlation to the TCGA-defined subtype centroids24 (Supplementary 248 

Figure 2-5A). In-group proportion (IGP) analysis25 confirmed high reproducibility across cohorts 249 

(Supplementary Table 4), and PCA again demonstrated clear separation among subtypes 250 

(Supplementary Figure 2-5B). Consistently, subtype M3 remained enriched for the mesenchymal 251 

subtype (Supplementary Figure 2-5C and Supplementary Table 5-8). Anatomical and functional 252 

features were also recapitulated in the validation cohorts: M1 showed higher LE scores, M2 retained 253 

high CT and cell cycle enrichment, and M3 was again characterized by PAN, MVP, and hypoxia 254 

(Supplementary Figure 2-5D-E). Importantly, survival analysis in CGGA cohorts confirmed that 255 

patients with M2 tumors had significantly longer overall survival compared to M1 and M3 256 

(Supplementary Figure 2-5F-G), with multivariate Cox models again supporting the favorable 257 

prognosis associated with M2 (Supplementary Table 9-12). In contrast, the classification proposed by 258 

Wang et al. failed to effectively stratify patients by survival outcomes (Supplementary Figure 6A). 259 

Moreover, M2 tumors within the MES subtype showed better overall survival compared to M1 and M3 260 

tumors (Supplementary Figure 6B). Collectively, these findings demonstrate that metabolic 261 

expression-based stratification defines clinically and biologically meaningful subtypes of IDH-wildtype 262 

glioblastoma, highlighting the profound metabolic heterogeneity of these tumors. 263 

Multi-Omic Characterization of Metabolic Expression Subtypes in IDH-Wildtype GBMs 264 
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Accumulating evidence suggests that genomic alterations, such as MYC amplification and EGFR 265 

mutations, can drive metabolic reprogramming in glioblastomas.34,35 To identify somatic events 266 

potentially underlying the metabolic expression subtypes, we first examined the genomic alteration 267 

landscape in the TCGA cohort. There was no significant difference in overall tumor mutation burden 268 

(TMB) among the subtypes (Supplementary Figure 7A). However, measures of genomic instability 269 

revealed notable differences: M3 tumors exhibited lower copy number variation burden (quantified by 270 

the number of segments) and reduced homologous recombination deficiency (HRD), but displayed 271 

higher aneuploidy scores compared to other subtypes (Supplementary Figure 7B-D), potentially 272 

driven by elevated hypoxic stress. When assessing subtype-specific associations with key GBM driver 273 

gene alterations, we found that M2 was enriched for amplifications of MDM4 and PIK3C2B (Figure 274 

2A, Supplementary Table 13). Deletions in CDKN2A, RB1, and other cell cycle-related genes (e.g., 275 

INSL6, BORA, UHRF2) were more frequently observed in M2 and M3 subtypes. In particular, M3 was 276 

associated with amplifications in MET and genes involved in cell adhesion, including PODXL, LAMB4, 277 

LAMB1, FSCN3, and PIK3CG.  278 

  To further understand the biological basis of these subtypes, we analyzed transcriptomic profiles using 279 

Gene Set Enrichment Analysis (GSEA). The M1 subtype was enriched for gene sets related to synaptic 280 

signaling, amino acid transport, and nervous system development (Figure 2B and 2C). In contrast, M2 281 

tumors showed activation of nucleoside biosynthesis, mitochondrial metabolism, and nucleotide 282 

excision repair pathways (Figure 2D). Subtype M3 was strongly associated with immune-related 283 

responses and cell adhesion processes (Figure 2E). Similar patterns of pathway enrichment were 284 

observed in the three CGGA validation cohorts, supporting the robustness of these subtype-specific 285 

transcriptomic signatures (Supplementary Figure 7E-P). 286 

  To explore epigenetic differences across the subtypes, we conducted a DNA methylation analysis using 287 

TCGA IDH-wildtype GBM samples. Differentially methylated CpG sites were ranked by descending 288 

differences in beta values to identify the most subtype-specific loci (Figure 2F). We annotated 289 

hypomethylated genes in each subtype using Gene Ontology (GO) analysis, revealing consistent 290 
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functional associations with transcriptomic data. In M1, hypomethylated genes were enriched in 291 

pathways related to nervous system development and chemical synaptic transmission. The M2 subtype 292 

showed epigenetic activation of genes involved in cell cycle progression, DNA replication, and DNA 293 

repair. In contrast, M3 tumors exhibited hypomethylation of genes related to cell adhesion, immune 294 

response, and angiogenesis (Figure 2G). 295 

Metabolic Expression Subtypes Exhibit Distinct Molecular and Immune Microenvironment 296 

Features 297 

Given the significant enrichment of immune-related pathways in our previous analyses, we next 298 

characterized the immune infiltration patterns associated with the metabolic expression subtypes using 299 

multiple established computational tools. We first assessed the cellular composition of each subtype 300 

through transcriptional deconvolution using CIBERSORTx.36 The M1 subtype, previously associated 301 

with leading edge (LE) features, was enriched in oligodendrocytes and stem-like tumor cells. In contrast, 302 

the M2 subtype, linked to cellular tumor (CT) characteristics, exhibited a higher abundance of 303 

differentiated-like tumor cells. Notably, the M3 subtype showed elevated levels of myeloid cells, 304 

granulocytes, and fibroblasts (Figure 3A). Using the ESTIMATE algorithm,26 we found that M3 tumors 305 

had significantly higher immune and stromal scores but lower tumor purity, consistent with a more 306 

complex and infiltrated tumor microenvironment (Figure 3B). Further immune deconvolution with the 307 

CIBERSORT algorithm27,28 revealed distinct immune cell distributions across subtypes. The M1 308 

subtype exhibited higher proportions of lymphocytes, while M3 was enriched in macrophages. The M2 309 

subtype showed a relatively higher abundance of M1 macrophages and resting mast cells, but fewer 310 

activated mast cells (Figure 3B, Supplementary Table 14). We also evaluated the expression of key 311 

immune checkpoint genes, which are involved in immune evasion mechanisms of cancer cells.37,38 The 312 

M3 subtype displayed significantly elevated expression of multiple inhibitory checkpoints (Figure 3B), 313 

indicating a highly immunosuppressive microenvironment. To further dissect immune functionality, we 314 

performed single-sample gene set enrichment analysis (ssGSEA)29 to quantify immune cell types and 315 

functional pathways. Interestingly, M3 tumors were enriched for signatures of both immune suppression 316 
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and immune activation, including cytolytic activity, antigen-presenting cell (APC) regulation, and T cell 317 

activation/inhibition processes (Figure 3B), suggesting a complex and multifaceted immune landscape. 318 

These findings were validated in the CGGA and CPTAC cohorts (Supplementary Figure 8A-D). In 319 

addition, M3 tumors showed elevated protein levels of both inhibitory checkpoint molecules (e.g., 320 

HAVCR2, LAIR1, CD274, VSIR) and effector molecules (e.g., GZMA, PRF1) (Supplementary Figure 321 

8D), reinforcing the coexistence of immune activation and suppression in this subtype. 322 

  Given that T cell receptor (TCR) diversity can reflect antigen-specific adaptive immune responses,39 323 

we examined TCR repertoires from RNA-seq data. M3 tumors exhibited greater TCR diversity 324 

compared to other subtypes (Figure 3C-D), consistent with an active yet dysregulated immune response. 325 

However, despite the higher expression of cancer-testis antigens (CTAs) in the M1 subtype (Figure 3E), 326 

this did not correlate with immune activation, suggesting that CTA expression alone is insufficient to 327 

infer antitumor immune engagement. 328 

Metabolic Expression Subtypes Exhibit Distinct Metabolic Characteristics 329 

To investigate whether the identified subtypes correspond to distinct metabolic features, we performed 330 

gene set variation analysis (GSVA) to estimate the enrichment scores of 113 metabolism-related 331 

pathways across all samples.30 Differential enrichment analysis (Supplementary Table 15) revealed 332 

that the M3 subtype was enriched in a wide range of metabolic processes, including those related to 333 

amino acid, lipid, carbohydrate, vitamin, and nucleotide metabolism. In contrast, the M2 subtype 334 

showed relative enrichment in pathways such as homocysteine biosynthesis, lysine degradation, 335 

glycine/serine/threonine metabolism, the citric acid cycle, glyoxylate, and propanoate metabolism. The 336 

M1 subtype exhibited selective upregulation of amino acid metabolic pathways, including dopamine 337 

biosynthesis, taurine/hypotaurine metabolism, and alanine/aspartate/glutamate metabolism (Figure 4A). 338 

These findings were independently validated in the CGGA and CPTAC cohorts (Supplementary 339 

Figure 9A-D, Supplementary Table 15). 340 

  To further evaluate whether these transcriptional metabolic differences translated into actual 341 

metabolite abundance, we analyzed metabolomic profiling data from the CPTAC cohort. Differential 342 
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metabolite analysis (Supplementary Table 16) revealed subtype-specific metabolite signatures. 343 

Consistent with the transcriptional enrichment of lysine degradation, homocysteine biosynthesis, and 344 

serine/threonine metabolism, the M2 subtype exhibited higher levels of homocysteine, serine, and 345 

threonine, along with reduced levels of L-lysine (Figure 4B).  346 

Metabolic Subtypes Are Recapitulated in Patient-Derived Cell (PDC) Models of Glioblastoma 347 

We next investigated whether the metabolic classification of glioblastoma (GBM) could be extended to 348 

patient-derived cell (PDC) models. Using transcriptomic data from Garofano et al.,14 we applied the 349 

nearest shrunken centroids method24,40 to classify 79 PDCs. Remarkably, these PDCs were stratified 350 

into three distinct metabolic subtypes, consistent with those observed in GBM tissue, and exhibited 351 

corresponding transcriptional profiles and functional enrichments (Figure 5A-G). Principal component 352 

analysis (PCA) confirmed distinct transcriptional patterns among the subtypes (Figure 6B). M2 PDCs 353 

were characterized by elevated levels of cell cycle and CT, while M3 PDCs showed increased activity 354 

in PAN, MVP, and hypoxia-associated signatures (Figure 5C-D). M1 PDCs exhibited upregulation of 355 

genes involved in synaptic transmission and dopamine secretion, whereas M2 PDCs were enriched in 356 

pathways related to cell proliferation. In contrast, M3 PDCs showed activation of immune-related 357 

pathways (Figure 5E-F). We further assessed the enrichment of metabolic pathways. M3 PDCs 358 

demonstrated higher activity across multiple metabolic processes, including carbohydrate, lipid, vitamin, 359 

and nucleotide metabolism. M2 PDCs displayed enrichment in pathways such as homocysteine 360 

biosynthesis, lysine degradation, glycine/serine/threonine metabolism, the citric acid cycle, glyoxylate, 361 

and propanoate metabolism. M1 PDCs selectively upregulated amino acid-related pathways, including 362 

dopamine biosynthesis, taurine/hypotaurine metabolism, and epinephrine biosynthesis (Figure 5G, 363 

Supplementary Table 15). To validate these findings, we analyzed gene expression data from 24 PDC 364 

cell lines, applying the same classification approach. The resulting subtypes exhibited consistent 365 

biological characteristics, further supporting the robustness of the metabolic classification 366 

(Supplementary Figure 10A-G). Together, these results demonstrate that the metabolic subtypes of 367 

GBM can be faithfully recapitulated in patient-derived cell models. 368 
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  Next, we conducted untargeted metabolomic profiling on PDCs to compare metabolite abundance 369 

across the metabolic subtypes. Mass spectrometry analysis identified 4,143 metabolites in these samples. 370 

Principal component analysis (PCA) of the metabolomic data partially recapitulated the three metabolic 371 

subtypes (Supplementary Figure 10H). Differential metabolite analysis (Supplementary Table 17) 372 

further confirmed distinct metabolic signatures among the subtypes. Consistent with pathway-level 373 

differences, M1 PDCs exhibited higher accumulation of taurine, 5-hydroxylysine, and D-alanyl-D-374 

alanine. In contrast, M2 PDCs were enriched in metabolites such as tricosanoylglycine and 2-O-375 

caffeoylhydroxycitric acid. M3 PDCs showed elevated levels of histidinyl-histidine, biotin amide, 376 

serylisoleucine, and various metabolites derived from tryptophan, phenylalanine, and valine (Figure 377 

5H). These findings support the notion that metabolite abundance patterns are consistent with the 378 

distinct metabolic pathway features characterizing the three PDC subtypes. 379 

Metabolic Expression Subtypes Display Distinct Sensitivity to Metabolic Inhibitors 380 

We further investigated whether the three metabolic subtypes exhibit differential sensitivity to metabolic 381 

inhibitors, given that targeting tumor metabolism has emerged as a promising therapeutic strategy.17 382 

Based on the distinct metabolic characteristics of each subtype, we selected three inhibitors: M-31850, 383 

which targets glycosaminoglycan degradation via HEX inhibition;41 FK866, a NAMPT inhibitor 384 

targeting nicotinate and nicotinamide metabolism;42 and Talarozole, a CYP26 inhibitor that disrupts 385 

retinoic acid metabolism.43 These pathways showed relatively higher activity in the M3 subtype across 386 

both GBM tissue samples and PDCs (Supplementary Figure 11A-C). Consistently, expression of the 387 

respective target genes was elevated at both the mRNA and protein levels in M3 subtypes across 388 

multiple GBM and PDC cohorts (Figure 6A-C, Supplementary Figure 11D). To assess the effects of 389 

these inhibitors, we first performed in vitro experiments using six PDC lines representing the three 390 

subtypes: BNI11-6 and BNI12-2 (M1), BNI2-4 and BNI12-1 (M2), and BNI1-3 and BNI25 (M3). To 391 

verify on-target effects, we quantified NAD+ levels, β-hexosaminidase activity, and retinoic acid 392 

concentrations after treatment. All three biochemical readouts changed in the predicted direction, 393 

consistent with inhibition of the intended metabolic pathway (Supplementary Figure 12A-C). Cell 394 
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viability assays revealed that M3 PDCs were more sensitive to all three inhibitors compared to M1 and 395 

M2 PDCs, yet displayed similar sensitivity to TMZ (Figure 6D, Supplementary Figure 12D). 396 

Consistent with this selective vulnerability, the inhibitors also induced higher levels of apoptosis in M3 397 

PDCs (Supplementary Figure 12E-F). Similarly, sphere formation assays demonstrated consistent 398 

results, with a marked reduction in sphere number of M3 PDCs upon treatment (Figure 6E-F, 399 

Supplementary Figure 13A-B).  400 

  To further elucidate metabolic consequences, we performed GO analysis on publicly available RNA-401 

seq datasets from glioma PDCs treated with FK866 or subjected to HEXB knockdown.44,45 FK866 led 402 

to cell-cycle inhibition and upregulation of cholesterol biosynthesis pathways, consistent with metabolic 403 

stress induced by NAD⁺ depletion. Conversely, HEXB knockdown caused cell-growth inhibition, 404 

reduced glycosaminoglycan metabolism and cell chemotaxis, and increased fatty acid metabolism 405 

(Supplementary Figure 12G-H). The perturbation of pathways influencing chemotactic programs 406 

suggests potential metabolic-immune coupling. 407 

  To evaluate the in vivo efficacy of these inhibitors, we engineered luciferase-expressing PDC lines 408 

from each subtype and implanted them into the right striatum of nude mice. After one week, mice with 409 

comparable baseline tumor burdens were randomized into control and treatment groups. In vivo 410 

bioluminescence imaging showed that tumor burden in mice bearing M3 PDCs (BNI1-3) was 411 

significantly reduced following treatment with the inhibitors, whereas no significant differences were 412 

observed in mice implanted with M1 or M2 PDCs (Figure 6G-H, Supplementary Figure 13C-D). 413 

Notably, survival analysis revealed that mice implanted with M3 PDCs exhibited prolonged survival 414 

upon treatment, whereas no survival benefit was observed in M1 or M2 PDC-bearing mice (Figure 6I). 415 

These findings suggest that metabolic expression-based subtyping can reveal subtype-specific metabolic 416 

vulnerabilities and may inform the development of targeted therapies for IDH-wildtype glioblastomas. 417 

   418 

 419 
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Discussion 420 

In this study, we successfully classified IDH-wildtype glioblastomas into three distinct metabolic 421 

subtypes. M1 subtype is enriched for synaptic signaling and amino acid metabolism. This subtype may 422 

reflect a more invasive, neuronally-associated phenotype possibly influenced by interactions with the 423 

peritumoral environment. M2 subtype is characterized by mitochondrial oxidative metabolism and cell 424 

cycle activity, and is associated with favorable patient survival. We propose that M2 represents a more 425 

metabolically efficient and proliferative but less aggressive tumor state. M3 subtype shows strong 426 

signatures of hypoxia, immune activation and suppression, and broad metabolic reprogramming, and 427 

correlates with poor prognosis. This subtype may reflect a stressed, therapy-resistant state with high 428 

microenvironmental interaction. These multi-layered profiles suggest the subtypes are not arbitrary 429 

groupings, but instead represent functionally regulated programs relevant to tumor behavior and patient 430 

outcomes. 431 

  The metabolic subtypes identified in this study might appear to be shaped by distinct genetic and 432 

epigenetic alterations. M2 tumors showed frequent MDM4 and PIK3C2B amplifications which are 433 

implicated in cell cycle regulation,46 aligning with their proliferative, cell cycle-driven profile. Both M2 434 

and M3 subtypes also exhibited higher rates of CDKN2A and RB1 deletions, known to impact lipid and 435 

glucose metabolism.47 These genomic events, together with subtype-specific DNA hypomethylation, 436 

suggest that coordinated molecular changes contribute to the emergence and maintenance of distinct 437 

metabolic states. Additionally, microenvironmental cues, such as hypoxia, immune infiltration, and 438 

nutrient stress, could also shape the metabolic states. Future studies leveraging single-cell, spatial, and 439 

functional genomics approaches will be essential to dissect the regulatory networks governing metabolic 440 

state transitions and stability in glioblastoma. 441 

  Although the subtypes identified in our study are derived from integrative, multi-omics analyses, their 442 

reproducibility across cohorts and consistent emergence in patient-derived models suggest the existence 443 

of stable, biologically relevant metabolic states. Nonetheless, given the well-documented plasticity of 444 

tumor metabolism,48 we acknowledge that these subtypes may represent dominant but potentially 445 
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transient cellular states influenced by microenvironmental pressures, similar to the Wang et al. states 446 

previously described. The selective vulnerabilities observed in M3, in particular, support the therapeutic 447 

relevance of these states and provide a rationale for future studies aimed at dissecting their regulatory 448 

drivers and plasticity using single-cell and spatial multi-omics approaches. 449 

  Numerous studies have demonstrated that metabolic alterations within the tumor microenvironment 450 

profoundly influence immune cell function, thereby promoting tumor progression.8 For instance, lactic 451 

acid produced by tumor cells impairs the differentiation and activation of monocytes and T cells, while 452 

also reducing the number and cytotoxic activity of CD8⁺ T cells and natural killer (NK) cells.49 Similarly, 453 

increased glutamine uptake by tumor cells depletes its availability in the microenvironment, thereby 454 

impairing immune cell function.50 Tryptophan degradation and reduced tryptophan levels inhibit T cell 455 

activation and promote the recruitment of myeloid-derived suppressor cells (MDSCs).51 In this study, 456 

we performed metabolic enrichment and immune infiltration analyses and revealed distinct immune 457 

microenvironments across the metabolic subtypes. Notably, the M3 subtype, characterized by elevated 458 

tryptophan and glutamine metabolism, was also associated with increased expression of inhibitory 459 

immune checkpoint genes and enrichment of T cell suppression signatures. These findings suggest that 460 

specific metabolic preferences may shape the immune landscape of each subtype. Further investigation 461 

is warranted to elucidate how these metabolic programs reprogram the immune microenvironment and 462 

contribute to immune evasion in glioblastoma.  463 

  Notably, the metabolic expression subtypes identified here were associated with distinct prognoses. 464 

M2 subtype, enriched for citric acid cycle activity, was associated with better prognosis. In contrast, the 465 

M3 subtype, characterized by higher activity in carbohydrate, nucleotide, and vitamin metabolism 466 

pathways, exhibited poorer survival. Similar trends were observed in prior studies.14-16,52 In contrast to 467 

previously reported pathway-based classification schemes,14 which left a substantial proportion of 468 

patients unclassified, our classification approach successfully stratifies all GBM patients across different 469 

datasets into prognostically distinct subtypes, highlighting its superior robustness and clinical utility.  470 
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  We examined the prognostic relevance of 113 metabolic signature scores in GBM. Although not all 471 

signatures showed consistent correlations across the five cohorts analyzed (Supplementary Table 18), 472 

several metabolic pathways, such as fatty acid biosynthesis, pyruvate metabolism, steroid hormone 473 

metabolism, arginine biosynthesis, glycine/serine/threonine metabolism, and taurine/hypotaurine 474 

metabolism, were significantly associated with patient outcomes in at least two cohorts. Notably, 475 

glycine/serine/threonine metabolism and taurine/hypotaurine metabolism were also differentially 476 

enriched among the metabolic subtypes (Figure 4A, Supplementary Figure 9). Kaplan-Meier survival 477 

analyses revealed that these two metabolic signatures may serve as prognostic indicators 478 

(Supplementary Figure 14A-B), and could represent potential therapeutic targets in GBM. 479 

  Our metabolic classification also holds promising implications for clinical translation. While three 480 

metabolic subtypes were consistently identified across datasets, survival analyses suggest that the most 481 

clinically relevant distinction lies between M2 and the other two subtypes. This is supported by 482 

consistent survival benefit in M2 across cohorts, despite limited statistical separation between M1 and 483 

M3. These findings suggest that M1 and M3, while molecularly distinct, may represent overlapping or 484 

intermediate clinical phenotypes. Thus, a two-tiered model, distinguishing M2 from non-M2 tumors, 485 

may have value for prognostic applications, while the full three-subtype framework provides deeper 486 

biological insight.    487 

  We acknowledge that the classification presented here is shaped by the complexity of intratumoral 488 

heterogeneity in glioblastoma, both spatial and genetic. While the three metabolic subtypes (M1-M3) 489 

reflect dominant transcriptomic and metabolic programs, they do not capture the full mosaic of cellular 490 

states present within a tumor. Single-cell analyses have consistently shown that glioblastomas harbor 491 

multiple co-existing phenotypes, and thus our bulk-based subtypes likely represent regional or clonal 492 

enrichments rather than uniform tumor-wide states. Additionally, the apparent stability of metabolic 493 

subtypes in patient-derived xenografts likely reflects both the selection of dominant clones at 494 

engraftment and the loss of regional microenvironmental cues, which drive metabolic plasticity in vivo. 495 

Thus, while our subtypes provide a meaningful framework for understanding metabolic diversity in 496 
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glioblastoma, we recognize that they represent downstream effects of a complex interplay between 497 

genetic alterations, environmental pressures, and spatial context. Future studies using spatially resolved 498 

transcriptomics and multi-region sampling will be critical to further deconvolute these relationships. 499 
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Figure legends 668 

 669 

Figure 1. Metabolism gene profiling reveals three distinct subtypes in IDH-wildtype glioblastomas. 670 

A. Flowchart illustrating the computational workflow used to classify tumor samples into metabolic 671 

expression subtypes. The TCGA cohort was used as a discovery set, while three CGGA cohorts, the 672 

CPTAC cohort, and two PDC cohorts served as validation sets. B. Heatmap showing consensus 673 

clustering using 142 centroid genes derived from a PAM classifier in the TCGA cohort. Molecular and 674 

clinical annotations are provided for each patient, arranged by metabolic subtype. C. Principal 675 

component analysis (PCA) of transcriptomic profiles distinguishing the three metabolic subtypes. D. 676 

Sankey diagram comparing subtype assignments of GBM samples based on metabolic classification, 677 

Wang et al., and Luciano et al.’s classification. CL: classical; MES: mesenchymal; PN: proneural. GPM: 678 

glycolytic/plurimetabolic; MTC: mitochondrial; NEU: neuronal; PPR: proliferative/progenitor. E. Box 679 

plots showing enrichment scores of IvyGAP features among metabolic subtypes (Wilcoxon rank-sum 680 

test). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. F. Box plots displaying enrichment scores 681 

for hypoxia and cell cycle programs across subtypes (Wilcoxon rank-sum test). *P < 0.05, **P < 0.01, 682 

****P < 0.0001. G. Kaplan-Meier survival curves comparing overall survival (OS) across the three 683 

subtypes. P-values determined by log-rank test. 684 

Figure 2. Somatic alterations, transcriptome, and DNA methylation analysis across metabolic 685 

expression subtypes in TCGA cohort. 686 

A. Oncoprint displaying the distribution of somatic mutations and CNVs among subtypes. Fisher’s exact 687 

test used for comparisons. Highlighted pathways include TP53, RTK, PI3K, MAPK, RB1, cell cycle, 688 

and cell adhesion. *P < 0.05. B. Heatmap of TCGA samples ranked by subtype using the top 100 689 

differentially expressed genes per subtype. C-E. GO enrichment network maps for M1 (C), M2 (D), and 690 

M3 (E) subtypes. Nodes represent enriched GO terms; edges indicate shared genes. Node size reflects 691 
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the number of genes. F. Heatmap of the top 300 differentially methylated probes across subtypes. G. 692 

Functional annotation of hypomethylated genes in each metabolic subtype. 693 

Figure 3. Immune infiltration analysis reveals high variability across the metabolic subtypes. 694 

A. Box plots showing cell composition across subtypes using CIBERSORTx deconvolution (Wilcoxon 695 

rank-sum test). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. B. Heatmap comparing immune-696 

related features among subtypes (ANOVA test). Immune, stromal, and purity scores from ESTIMATE; 697 

immune cell fractions from CIBERSORT; immune signatures from ssGSVA. C-E. Box plots showing 698 

differences in TCR richness, Shannon diversity, and CTA scores (Wilcoxon rank-sum test). *P < 0.05, 699 

**P < 0.01, ***P < 0.001; ns: not significant. 700 

Figure 4. Metabolic subtypes show distinct metabolic features. 701 

A. Heatmap illustrating differential enrichment of metabolic signatures in the TCGA cohort. Signatures 702 

include amino acid, carbohydrate, lipid, nucleotide, vitamin, and other metabolic pathways. B. Heatmap 703 

showing differential metabolite abundances across subtypes in the CPTAC cohort (ANOVA test, P < 704 

0.05). 705 

Figure 5. Metabolic subtypes are successfully applied to patient-derived cell (PDC) model of GBM. 706 

A. Heatmap of consensus clustering using 134 centroid genes from the PAM classifier in the Garofano 707 

et al. PDC cohort. B. PCA of transcriptomic data in PDCs distinguishing the three metabolic subtypes. 708 

C-D. Box plots showing enrichment scores of IvyGAP features, hypoxia, and cell cycle programs across 709 

PDC subtypes (Wilcoxon rank-sum test). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. E. 710 

Heatmap of PDC samples ranked by subtype using the top 100 differentially expressed genes per 711 

subtype. F. GO enrichment analysis of biological processes in each subtype. G. Heatmap of differential 712 

enrichment scores for metabolic pathways in the PDC cohort. H. Heatmap showing differentially 713 

abundant metabolites from PDC cell lines (ANOVA test).  714 

Figure 6. Metabolic subtypes show distinct sensitivity to metabolic inhibitors in vitro and in vivo.  715 
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A-B. Box plots showing the expression levels of NAMPT, HEXA, HEXB, and CYP26A1 in PDC and 716 

CPTAC cohorts (Wilcoxon rank-sum test). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. C. 717 

Box plots showing the protein levels of NAMPT, HEXA, and HEXB in CPTAC cohort (Wilcoxon rank-718 

sum test). *P < 0.05, ****P < 0.0001. D. Viability curves of M1, M2, and M3 PDC cell lines treated 719 

with FK866, M-31850, and Talarozole. Data shown as mean ± s.d.  n ≥ 3 per group. E. Representative 720 

bright-field images of PDC tumor spheres under control or treatment conditions. Scale bars, 100 μm. F. 721 

Bar plots quantifying tumor spheres between control and inhibitor-treated groups (unpaired Student’s t-722 

test). ***P < 0.001. Data shown as mean ± s.d. G. Representative in vivo bioluminescent images of 723 

nude mice bearing the intracranial xenografts treated with FK866, M-31850, and Talarozole (n = 5 per 724 

group). H. Quantification of tumor growth based on in vivo bioluminescence in treated versus control 725 

mice (unpaired Student’s t-test). **P < 0.01, ****P < 0.0001. Data shown as mean ± s.d. I. Kaplan-726 

Meier survival curves of mice with PDC xenografts treated with metabolic inhibitors (Log-rank test). 727 

**P < 0.01; n = 5 per group. 728 
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