

1 **ON-01, an engineered recombinant oncolytic herpes simplex virus type-1, in**
2 **recurrent glioma: a single-arm, phase 1/2 study**

3

4 Wei Zeng^{1,3,4#}; Peiwen Wang^{1,2,4#}; Sheng Fang^{1,2,4#}; Siqi Ge⁵; Weifeng Jia³; Shirong
5 Peng²; Mengyang Wang³; Xiaoyang Qin^{1,2,4}; Wenxin Zhang^{1,2,4}; Jiajia Gao^{1,2,4};
6 Xiaodong Su^{1,2,4}; Guiqiang Yuan^{1,2,4}; Jiankun Wu^{1,2,4}; Yida Liu^{1,2,4}; Youwen Wang^{1,2,4};
7 Huacong Lu^{1,2,4}; Ran Mu^{1,2,4}; Fang Wu⁶; Qing Chang⁷; Guishan Jin^{1,2,4}; Fangang
8 Meng,⁸; Junwen Zhang^{1,2,4*}; Fusheng Liu^{1,2,4*}

9

10 1. Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical
11 University, Beijing 100070, People's Republic of China
12 2. Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University,
13 Beijing 100070, People's Republic of China
14 3. Department of Neurosurgery, Capital Medical University Electric Power Teaching
15 Hospital/State Grid Beijing Electric Power Hospital, Beijing 100073, People's
16 Republic of China
17 4. Beijing Laboratory of Biomedical Materials, Beijing 100070, People's Republic of
18 China
19 5. Department of Neuroepidemiology, Beijing Neurosurgical Institute, Capital Medical
20 University, Beijing 100070, People's Republic of China
21 6. Department of Pathology, Capital Medical University Electric Power Teaching
22 Hospital/State Grid Beijing Electric Power Hospital, Beijing 100073, China

23 7. Department of Molecular Neuropathology, Department of Neuropathology, Beijing
24 Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing
25 100070, People's Republic of China

26 8. Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Beijing
27 Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of
28 China

29 #, these authors contributed equally to this work.

30 *Correspondence: Junwen Zhang (jewzhang@hotmail.com) and Fusheng Liu
31 (liufusheng@ccmu.edu.cn)

32

33 **Abstract**

34 **Background:** The prognosis of patients with recurrent WHO grade 4 glioma is poor,
35 particularly in glioblastoma (GBM), which has a median survival of approximately 6
36 months and no effective treatment options. We evaluated the short-term (28-day) safety
37 and efficacy of ON-01, an engineered recombinant oncolytic herpes simplex virus type-
38 1, in patients with recurrent WHO grade 4 glioma.

39 **Methods:** In this single-arm, phase 1/2 clinical trial, eligible patients received
40 intratumoral injections of ON-01 under stereotactic guidance. The primary endpoint
41 was to assess the short-term safety profile of ON-01 treatment. Secondary endpoints
42 included progression-free survival (PFS), overall survival (OS), and the 2-year OS rate.
43 An exploratory objective was to identify tumor-related biomarkers predictive of
44 treatment efficacy.

45 **Results:** Of the 30 patients treated with ON-01, 13 (43.3%) were male, and the median
46 age was 50.0 years (range, 22–75). A total of 36 grade 1, 12 grade 2, and 2 grade 3
47 adverse events were reported. Among all treated patients, the median OS was 12.0
48 months (95% CI, 10.1–13.9), median PFS was 3.0 months (95% CI, 1.7–4.3), and 2-
49 year OS rate was 27.7% (95% CI, 12.6%–45.0%). Seven patients with recurrent
50 multifocal gliomas demonstrated regression of non-injection site lesions following ON-
51 01 therapy. Furthermore, patients with elevated expression of herpesvirus entry
52 mediator exhibited significantly prolonged survival ($p=0.015$).

53 **Conclusions:** Intratumoral infusion of ON-01 appeared safe and demonstrated efficacy
54 in patients with recurrent malignant glioma, with no evidence of neurotoxicity. The
55 therapeutic response to ON-01 may be associated with HVEM expression levels.

56

57 **Keywords:** recurrent glioma; oncolytic virotherapy; herpes simplex virus; single-arm
58 trial

59

60 **Key Points**

- 61 1. Intratumoral infusion of ON-01 confirmed the absence of neurovirulent potential.
- 62 2. ON-01 exhibited preliminary therapeutic efficacy in patients with recurrent WHO
63 grade 4 glioma.
- 64 3. ON-01 enables targeted intracellular chemotherapy in GBM by converting 5-FC to
65 5-FU.

66

67 **Importance of the Study**

68 This study evaluates ON-01, a genetically engineered oncolytic herpes simplex virus
69 type-1 (HSV-1) designed to enhance tumor lysis and enable intracellular chemotherapy
70 in patients with recurrent WHO grade 4 malignant gliomas. The results demonstrate a
71 favorable short-term safety profile, with manageable adverse events and no significant
72 virus-related neurotoxicity. ON-01 also exhibited preliminary therapeutic efficacy, with
73 a median overall survival of 12.0 months and measurable responses, particularly in
74 smaller tumors. Its dual mechanism—oncolytic virotherapy combined with prodrug
75 activation—distinguishes ON-01 from existing therapies. These findings support ON-
76 01 as a promising candidate for the treatment of recurrent WHO grade 4 glioma and
77 provide important insights into the clinical development of oncolytic virus-based
78 strategies for malignant gliomas. Larger, controlled trials are warranted to confirm its
79 therapeutic potential and to further assess its impact on survival and treatment options
80 for patients with inoperable or multifocal disease.

81

82 **Introduction**

83 Despite the establishment of standardized treatment protocols, the median survival time
84 for newly diagnosed patients with WHO grade 4 malignant gliomas remains <15
85 months.^{1,2} Nearly all patients experience recurrence, with median survival after
86 recurrence typically about 6 months^{3,4} due to the lack of effective interventions.⁵ The
87 highly immunosuppressive tumor microenvironment and limited immune cell
88 infiltration of glioblastoma (GBM) hinder the efficacy of immune checkpoint

89 inhibitors.^{6,7} Therefore, patients with recurrent GBM urgently require more effective
90 therapies to improve prognosis.

91 Oncolytic virotherapy is an emerging approach that selectively infects and destroys
92 tumor cells while stimulating an antitumor immune response⁸. Multiple clinical trials⁹⁻
93¹² are currently evaluating its efficacy and safety in recurrent gliomas. HSV-1 oncolytic
94 viruses, such as G47Δ,^{13,14} CAN-3110,¹⁵ and G207,¹⁶ have demonstrated potent direct
95 tumor-killing effects. Their large genome allows genetic engineering to improve both
96 safety and therapeutic efficacy.

97 ON-01 is an innovative recombinant oncolytic HSV-1 engineered through deletion
98 of the neurotoxic gene *ICP34.5*¹⁷ and the immune evasion gene *ICP47*¹⁸, combined
99 with insertion of the *Escherichia coli* cytosine deaminase (CD) gene to enhance
100 therapeutic activity.^{19,20} Unlike G207 and G47Δ, ON-01 retains the *ICP6* gene,^{10,21,22}
101 ensuring effective replication. T-VEC, another *ICP6*-retained oncolytic HSV-1, is FDA-
102 approved for treating malignant melanoma, supporting the safety of this approach.^{23,24}
103 ON-01 enters tumor cells via the herpesvirus entry mediator (HVEM),^{25,26} directly
104 lysing tumor cells while enhancing antitumor immunity. Additionally, the CD enzyme
105 converts the non-toxic prodrug 5-fluorocytosine (5-FC) into the cytotoxic
106 chemotherapy agent 5-fluorouracil (5-FU), enabling targeted intracellular
107 chemotherapy for solid malignancies.

108 Here, we report the first single-arm, phase 1/2 clinical trial of ON-01 involving 30
109 patients with recurrent WHO grade 4 glioma. This study assessed short-term safety and
110 provided an initial evaluation of efficacy.

111

112 **Materials and Methods**

113 **Study design and participants**

114 From October 2018 to August 2022, adult patients with recurrent WHO grade 4
115 gliomas—including IDH-wildtype GBM and IDH-mutant astrocytoma—were enrolled
116 at the Department of Neurosurgery, Beijing Tiantan Hospital, and Beijing Electric
117 Power Hospital. Tumor diameters ranged from 1 to 5 cm, with the largest lesion
118 measured in patients with multifocal disease. Diagnoses were based on the 2021 5th
119 edition of the World Health Organization Classification of Tumors of the Central
120 Nervous System (WHO CNS 5). In patients with an initial diagnosis of WHO grade 4
121 glioma, atypical MRI enhancement prompted the use of PET-CT to differentiate tumor
122 recurrence from radiation necrosis.

123 This single-arm, phase 1/2 clinical trial was designed to evaluate the short-term (28
124 days) safety and efficacy of ON-01 in patients with recurrent WHO grade 4 malignant
125 gliomas. Written informed consent was obtained from all participants prior to
126 enrollment, and the study protocol was approved by the Ethics Committee of Beijing
127 Tiantan Hospital. The trial is registered with the Chinese Clinical Trial Registry
128 (ChiCTR; registration number ChiCTR1900022570). A detailed experimental protocol
129 is available in the supplementary materials.

130

131 **Sample Size Justification**

132 The sample size was determined based on the 6-month progression-free survival (PFS6)

133 rate (PMID: 17108063). Assuming a PFS6 rate of 15% under the null hypothesis (H_0),
134 based on historical controls for recurrent high-grade glioma, the study was designed to
135 detect a clinically meaningful improvement to a target rate of 40% under the alternative
136 hypothesis (H_1). With a one-sided significance level of $\alpha = 0.05$, enrolling 30 patients
137 provides over 85% power using an exact binomial test, accounting for a potential
138 dropout rate of approximately 15%. Further details are provided in the experimental
139 protocol.

140

141 **Inclusion and exclusion criteria**

142 Eligible participants were adults aged 18–75 years who were able to provide voluntary
143 written informed consent. Patients were required to have supratentorial high-grade
144 glioma confirmed by intraoperative frozen pathology, along with radiologic evidence
145 of tumor recurrence. The recurrent enhancing lesion was required to measure ≥ 1 cm
146 and <5 cm on MRI and/or PET-CT. In addition, patients needed to have a Karnofsky
147 Performance Status (KPS) score greater than 60. Key exclusion criteria included
148 inability to provide informed consent, pregnancy or lactation, and participation in
149 another clinical trial within the previous 30 days. Patients with a history of encephalitis,
150 multiple sclerosis, other central nervous system infections, or active oral herpetic
151 lesions were also excluded. A complete list of inclusion and exclusion criteria can be
152 found in the experimental protocol provided in the supplementary materials.

153

154 **Procedures**

155 All injections were performed under stereotactic guidance. The planned trajectory
156 targeted the tumor core while avoiding eloquent cortical and subcortical regions, major
157 vessels, the ventricular system, and any prior surgical cavity. A stereotactic biopsy was
158 first performed to confirm the nature of the enhancing lesion. After the biopsy was
159 completed, the biopsy needle was withdrawn, and the injection cannula was introduced
160 along the same trajectory and to the same depth. ON-01 delivery was conducted using
161 a custom-designed injection device (Supplementary Figure 3) developed by our team.
162 First, 1 mL of viral suspension was slowly loaded into the device's internal tubing (total
163 internal volume approximately 3 mL). The syringe within the injection device
164 (Supplementary Figure 3B) was then filled with 3–5 mL of normal saline, and the
165 injection device was connected to the flow-control module. The flow-control device
166 (Supplementary Figure 3C) was set to a rate of 3 mL/h to gradually advance the fluid
167 column. When the air within the tubing had been nearly fully evacuated, the system
168 was connected to the cannula, and viral infusion into the target site was initiated. At the
169 end of the infusion, the flow-control device was stopped, and the cannula was left in
170 place for 15 minutes to reduce potential backflow. The cannula was then withdrawn
171 slowly, and the scalp was closed with a single suture. A CT scan was performed 6–8
172 hours postoperatively to exclude hematoma. Beginning on postoperative day 1, patients
173 received a 20-day course of oral 5-FC (100 mg/kg/day in four divided doses). No repeat
174 intratumoral ON-01 injections were administered to the same lesion in any patient.

175 All patients were monitored for adverse events (AEs) for 28 days after ON-01
176 administration. AEs were recorded and graded according to the National Cancer

177 Institute Common Terminology Criteria for Adverse Events (CTCAE), version 5.0.
178 Serious AEs (SAEs) were reported to the Ethics Committee of Beijing Tiantan Hospital
179 within 24 hours, and emergency measures were implemented immediately to ensure
180 patient safety. Treatment interruption was performed as necessary.

181

182 **Tumor response assessment**

183 The study was originally designed to assess tumor response using RECIST criteria. For
184 this revision, all imaging data were re-evaluated using the RANO criteria, which are
185 more appropriate for high-grade gliomas. The final response results reported in the
186 manuscript are based on the RANO criteria. Brain MRI was performed at baseline,
187 every 1 month within a half-year, every 2 months thereafter, and at any time if clinical
188 progression was suspected. Tumor response was assessed by the investigators,
189 including a senior neurosurgeon and a neuroradiologist. The imaging and response
190 evaluations were independently reviewed by five central experts who were not involved
191 in the study. There was 100% agreement among the five independent central reviewers
192 (Supplementary Figure 4). After two months or longer of oncolytic virus therapy,
193 response criteria (CR, PR, SD, PD) were used to evaluate outcomes, and these results
194 were included in the Results section (Table 1 and Supplementary Table 1). Suspected
195 pseudo progression was monitored through subsequent MRI scan monthly and if
196 necessary, PET-CT were performed to distinguish pseudo progression through
197 monitoring metabolic activity levels of local lesions.

198

199 **Anti-edema management**

200 Postoperative anti-edema therapy was administered according to clinical symptoms and
201 radiographic findings. Regimens included mannitol (250 mL twice daily for 3–10 days),
202 dexamethasone (10 mg once daily for 3–10 days), and bevacizumab (2.5 mg/kg, 1 time,
203 administered selectively to patients with severe cerebral edema). The detailed use of
204 these agents is summarized in Supplementary Table 4.

205

206 **Immunohistochemistry**

207 Immunohistochemical analysis was performed on biopsy samples to evaluate HVEM
208 expression. Samples with HVEM positivity <10% were classified as low expression,
209 whereas those with positivity ≥10% were classified as high expression. HVEM
210 expression for all available samples is shown in Supplementary Figure 1 and
211 Supplementary Figure 2.

212

213 **TMB, MSI, POLE/D1 mutation**

214 Genomic DNA was extracted from frozen tumor samples and assessed for quantity and
215 integrity using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Wilmington,
216 DE) and 1% agarose gel electrophoresis. Approximately 3 µg of DNA was fragmented
217 to 150–220 bp using a Covaris sonicator, purified, end-repaired, and ligated with
218 Agilent adapters (SureSelect Human All Exon v6, Agilent Technologies, USA).
219 Libraries were PCR-amplified, hybridized with custom probes, washed, eluted, and
220 sequenced on an IDNBSEQ-T7 platform to generate 150 bp paired-end reads. Whole-

221 exome sequencing and analysis were performed by OE Biotech Co., Ltd. (Shanghai,
222 China). The somatic mutations including somatic single nucleotide variants (SNVs) and
223 somatic INDELs were screened out using MuTect2. Variants with an alternate allele
224 depth <10 or a variant allele frequency (VAF) <0.05 were excluded. Tumor mutational
225 burden (TMB) was calculated based on the remaining somatic mutations. TMB =
226 Number of nonsynonymous somatic mutations in the area of coding sequence
227 (CDS)/Length of CDS. The hg19 CDS length used was 34.3944 Mb. Filtered somatic
228 variants in VCF format were converted to MAF format, from which mutations in the
229 POLE or POLD1 genes were extracted and defined as POLE/POLD1 mutations.
230 Microsatellite instability (MSI) status was assessed using MSIsensor2, based on the
231 pre-trained machine learning model models_b37_HumanG1Kv37.

232

233 **Outcomes**

234 The primary endpoint of this study was to evaluate the short-term (28-day) safety
235 profile of ON-01 treatment. Secondary endpoints included progression-free survival
236 (PFS), overall survival (OS), and the 2-year OS rate. An exploratory objective was to
237 identify tumor-related biomarkers predictive of efficacy.

238

239 **Statistical analysis**

240 All statistical analyses were conducted using SPSS (version 17.0). OS was defined as
241 the time from ON-01 injection to death or last follow-up. Continuous variables were
242 expressed as mean (SD) for normally distributed data, and categorical variables were

243 presented as percentages. Survival outcomes were estimated with the Kaplan–Meier
244 method, and group differences were assessed with the log-rank test. All *P* values were
245 two-sided, with *P* < 0.05 considered statistically significant.

246

247 **Results**

248 **Patient characteristics**

249 A total of 30 adult patients were enrolled to receive ON-01 treatment (Figure 1). The
250 study population included 13 males (43.3%) and 17 females (56.7%), with a median
251 age of 50.0 years (range, 22–75 years). Among them, 13 patients (43.3%) presented
252 with single lesions and 17 patients (56.7%) with multifocal lesions. The inclusion
253 criteria were expanded to allow patients with larger tumor diameters, ranging from 1 to
254 5 cm. The baseline characteristics of the patients are summarized in Table 1, and
255 detailed information for each patient is provided in Supplementary Table 1. Of all
256 patients, 6 underwent surgical resection due to tumor progression; 7 received
257 temozolomide chemotherapy; 1 was treated with nivolumab; and 1 underwent Gamma
258 Knife radiosurgery. Six patients underwent a second oncolytic virus injection. For
259 Patients 1, 5, and 15, the second injection targeted recurrent lesions, whereas for
260 Patients 13, 14, and 27, it targeted newly developed lesions. Injection sites varied
261 according to lesion location, and surgical access was selected to ensure accurate
262 targeting of each lesion (Supplementary Table 7). In the tumor tissues available for
263 analysis, 8 patients (26.7%) showed HVEM expression >10%. MGMT promoter
264 methylation was observed in 11 patients (36.7%), while 18 patients (60.0%) were

265 unmethylated. Regarding tumor mutational burden (TMB), 14 patients (46.7%)
266 exhibited high TMB (≥ 10 mut/Mb), and 15 patients (50.0%) had low TMB (< 10
267 mut/Mb). For microsatellite instability (MSI) status, no patient was MSI-high, whereas
268 29 patients (96.7%) were microsatellite stable (MSS). Analysis of POLE/D1 status
269 revealed that 3 patients (10.0%) carried mutations, and 26 patients (86.7%) were wild
270 type.

271

272 **Safety**

273 The safety profile of ON-01 intratumoral injection is summarized in Table 2. Treatment-
274 related AEs were predominantly mild to moderate, with the most common being
275 hyponatremia (33.3%), hypokalemia (33.3%), fever (20.0%), and anemia (20.0%).
276 Grade 3 AEs occurred in two patients (6.67%): one case of pyramidal tract syndrome
277 and one case of hyponatremia, both of which resolved with appropriate management.
278 The patient with hyponatremia achieved electrolyte normalization before discharge,
279 while the patient with pyramidal tract syndrome, who had recurrence in the right frontal
280 lobe and basal ganglia, presented with left upper limb spasticity and muscle weakness
281 but showed marked improvement within one week. No grade 4 or 5 AEs were observed
282 during the study period. These findings indicate that ON-01 intratumoral injection has
283 a favorable short-term (28-day) safety profile, with all AEs being clinically manageable
284 and no severe or life-threatening complications reported.

285

286 **Clinical and imaging outcomes**

287 The median PFS among patients treated with ON-01 was 3.0 months (95% CI, 1.7–4.3)
288 (Figure 1A), and the median OS was 12.0 months (95% CI, 10.1–13.9) (Figure 2B).
289 The 2-year OS rate was 27.7% (95% CI, 12.6%–45.0%) (Figure 2B). Among the
290 patients treated with ON-01, 2 patients (6.7%) achieved a complete response (CR), 6
291 patients (20.0%) achieved a partial response (PR), 13 patients (43.3%) had stable
292 disease (SD), and 9 patients (30.0%) experienced progressive disease (PD). In a
293 representative case (patient #3), a left thalamic glioma recurred 7 months after resection
294 and was treated with ON-01 injection. Serial T1-weighted MRI demonstrated
295 progressive shrinkage of the recurrent lesion, with near-complete resolution observed
296 at the 18-month follow-up (Figure 3A, red arrow). However, a new lesion distant from
297 the injection site appeared at 32 months (blue arrow), ultimately leading to patient death.
298 Notably, 7 of 17 patients (41.2%) with multifocal lesions exhibited partial regression at
299 both injected and non-injected sites within 2 months of ON-01 therapy. Representative
300 examples of three typical cases are presented in Figure 3B. These findings suggest that
301 ON-01 exerts both local oncolytic effects and potential systemic antitumor activity.
302

303 **Subgroup survival analyses**

304 To evaluate the efficacy of ON-01 across different patient populations, we conducted
305 stratified analyses based on clinical characteristics, demographic factors, and treatment
306 response profiles to identify potential subgroups with differential outcomes (Figure 4
307 and Supplementary Table 2). Recurrent grade 4 glioma with high HVEM expression
308 demonstrated greater sensitivity to ON-01 therapy ($p=0.015$, 30.5 [26.7–34.3] vs. 10.0

309 [7.3-12.7] months), and therapeutic efficacy was higher in tumors measuring 1 to 3 cm
310 in diameter ($p=0.007$, 18.5 [7.8-29.2] vs. 8.0 [3.7-12.3] months). No statistically
311 significant difference in efficacy was observed in IDH1 status ($p=0.759$), MGMT
312 promotor status ($p=0.185$), TMB ($p=0.549$) and POLE/D1 status ($p=0.889$).

313

314 **Discussion**

315 Oncolytic viruses have emerged as a novel therapeutic approach for malignant tumors
316 following CAR-T therapy²⁷ and targeted agents²⁸, characterized by their dual
317 mechanisms of tumor lysis and immune activation. In addition to these properties, ON-
318 01, the oncolytic virus we developed, also demonstrates the ability to induce
319 intracellular chemotherapy.¹⁹

320 This single-arm, phase 1/2 clinical trial evaluated the safety and efficacy of ON-01
321 in 30 patients with recurrent WHO grade 4 malignant gliomas. The results demonstrated
322 a favorable short-term (28-day) safety profile with excellent patient tolerance. Most
323 patients experienced only grade 1 AEs, and no significant virus-related neurotoxicity
324 was observed. Among those treated with ON-01, the trial revealed a median OS of 12.0
325 months following recurrence. At the time of this manuscript submission, two patients
326 (Patients 17 and 19) had achieved remarkable long-term survival, exceeding 60 months
327 after ON-01 injection. Both were IDH1 wild-type and MGMT-methylated, and their
328 detailed characteristics are provided in Supplementary Table 6.

329 The use of adjunctive anti-edema agents, particularly corticosteroids, mannitol, and
330 bevacizumab, may confound both radiographic and clinical outcome assessments in

331 patients with recurrent malignant gliomas. Bevacizumab, in particular, has been
332 associated with rapid reductions in contrast enhancement on MRI, raising the
333 possibility of a “pseudo-response.” In our cohort, 29 patients (96.7%) received
334 corticosteroids, 24 (80.0%) received mannitol, and 8 (26.7%) received bevacizumab
335 after surgery and ON-01 injection. Bevacizumab was administered selectively to
336 patients with severe cerebral edema or disease progression at a dose of 2.5 mg/kg (1
337 time). To address this potential confounder, we examined the relationship between the
338 administration of these agents and OS but found no statistically significant associations
339 (mannitol, $p=0.820$; dexamethasone, $p=0.890$; bevacizumab, $p=0.240$). Furthermore, to
340 minimize the risk of misinterpreting pseudo-response or pseudo-progression, we
341 performed monthly follow-up MRI scans to continuously assess tumor size. Although
342 these findings suggest that adjunctive therapies did not significantly influence survival
343 outcomes in this study, we acknowledge that their use, particularly bevacizumab, may
344 still complicate radiographic interpretation and represents an important limitation in
345 evaluating therapeutic response.

346 Among all patients in this study, only Patient 19 was suspected to have pseudo-
347 progression. In this patient, the oncolytic lesion (left temporal) showed a slight increase
348 in size within 4 months after injection. After dexamethasone administration, the lesion
349 gradually shrank and nearly resolved completely. Although the incidence was low, this
350 case highlights the importance of careful imaging follow-up and timely intervention to
351 differentiate true tumor progression from treatment-related effects.

352 In ON-01, the neurotoxic *ICP34.5* and immune evasion *ICP47* genes were deleted.

353 These genetic modifications resulted in significantly reduced neurotoxicity and
354 enhanced immune-mediated viral clearance, with no virus-associated neurotoxicity
355 observed among the 30 treated patients. The most common AEs included electrolyte
356 disturbances and anemia, which appeared to be primarily related to cancer metabolism
357 rather than viral therapy and were effectively managed with standard clinical
358 interventions, and no long-term complications were reported. Other transient adverse
359 reactions, including flushing (10%), fever (20%), thrombocytopenia (6.7%), and
360 leukopenia (3.3%), were successfully resolved with symptomatic treatment.
361 Neurological complications, including delirium and seizures (3.3% each), were
362 associated with tumor recurrence and stereotactic surgical procedures²⁹ and resolved
363 following appropriate therapeutic interventions. Grade 3 AEs were uncommon (6.7%)
364 and consisted of one case of pyramidal tract signs and one case of hyponatremia, both
365 likely procedure-related. These findings suggest that ON-01 represents a promising
366 therapeutic option for recurrent malignant gliomas, with a safety profile characterized
367 by the absence of significant virus-related neurotoxicity and manageable treatment-
368 associated AEs.

369 The design of ON-01 was specifically tailored to address the aggressive nature and
370 limited treatment options for malignant gliomas. Unlike conventional approaches, such
371 as those used in G47Δ and CAN-311 modifications, ON-01 retains the *ICP6* gene to
372 enhance viral replication efficiency within tumor cells. Additionally, incorporation of a
373 *CD* gene enables the enzymatic conversion of the prodrug 5-FC into the cytotoxic agent
374 5-FU, disrupting tumor DNA synthesis. This innovative design facilitates synergistic

375 oncolysis through intracellular chemotherapy. Preclinical investigations further
376 revealed that HSV-1-mediated downregulation of dihydropyrimidine dehydrogenase
377 (DPD) sustains therapeutic concentrations of 5-FU within tumor cells, prolonging its
378 cytotoxic effects. This unique combination of enhanced viral replication, prodrug
379 activation, and metabolic modulation distinguishes ON-01 from other oncolytic virus
380 platforms and may contribute to its potential therapeutic efficacy against recurrent
381 Grade 4 malignant glioma (IDH-wt and IDH-mutated).

382 The randomized, open-label phase 2/3 trial of Tocagen 511³⁰ reported a median OS
383 of 11.1 months, in which patients underwent tumor resection followed by Toca 511. In
384 our non-randomized, open-label phase 1/2 trial, we employed a distinct approach with
385 direct intratumoral injection of ON-01 and no surgical resection at the beginning of
386 enrollment, which resulted in a median OS of 12.0 months. The fundamental distinction
387 between ON-01 and Toca 511 lies in their viral vector characteristics. ON-01, based on
388 an HSV-1 backbone, demonstrates inherent oncolytic activity, as evidenced by in vitro
389 experiments: even without the *CD* gene, the parental oHSV-1 vector achieves an IC₅₀
390 of 0.6 MOI against U87 glioma cells.²⁰ In contrast, Toca 511 is a nonlytic retroviral
391 replicating vector. The vector of Tocagen 511 without the *CD* gene (AC3-GFP) shows
392 negligible direct cytotoxic effects on U87 cells.³¹ Preclinical investigations further
393 revealed that HSV-1-mediated downregulation of DPD sustains therapeutic
394 concentrations of 5-FU within tumor cells, prolonging its cytotoxic effects.¹⁹ This
395 combination of enhanced viral replication, prodrug activation, and metabolic
396 modulation distinguishes ON-01 from other oncolytic virus platforms and supports its

397 potential success in future phase 2/3 clinical trials.

398 In this study, we employed stereotactic techniques to administer a single injection of
399 10^8 pfu of ON-01, utilizing a relatively low dose and frequency without repeated
400 injections into the same recurrent lesion. Even at this low dosage, ON-01 demonstrated
401 significant antitumor efficacy, with some patients experiencing substantial tumor
402 volume reduction or complete tumor disappearance. As a novel aspect, this study is the
403 first to include patients with multifocal recurrent gliomas. The results revealed that ON-
404 01 not only exhibited therapeutic effects at the injection site but also induced tumor
405 shrinkage or disappearance in distant, non-injected lesions. Regarding enrollment
406 criteria, we expanded the tumor diameter range to 1–5 cm; however, survival analysis
407 indicated that ON-01 was particularly effective for small tumors measuring 1–3 cm,
408 with a median survival of 20 months. This finding suggests that oncolytic virotherapy
409 may be especially suitable for patients with small, functionally located, inoperable
410 tumors, offering a new therapeutic option for this population.

411 IDH serves as a crucial molecular marker for predicting the prognosis of patients
412 with CNS WHO grade 4 glioma.³² Typically, patients with IDH-mutant astrocytoma
413 exhibit significantly better prognosis than those with IDH-wildtype GBM from the time
414 of initial diagnosis. However, in our study of recurrent patients treated with ON-01, no
415 significant difference in OS was observed between IDH-mutant and wildtype ($p=0.759$;
416 12.0 [6.6–17.4] vs. 12.5 [9.1–15.9] months). These findings are consistent with
417 previous reports indicating that IDH1 mutation status does not significantly impact
418 survival outcomes in patients with recurrent high-grade glioma.³³ Similarly, other

419 oncolytic virus clinical trials have also shown that IDH1 status is not associated with
420 OS.^{14,34} These findings indicate that IDH mutation is associated with longer survival
421 from the time of diagnosis, but no difference is observed after tumor recurrence.

422 Through further subgroup analysis, we identified another key prognostic indicator—
423 HVEM. The data demonstrated that HVEM-positive patients had significantly longer
424 survival, a phenomenon potentially related to the mechanism of action of oncolytic
425 viruses. Specifically, as the primary entry receptor for HSV-1, high expression of
426 HVEM in tumor tissues facilitates more efficient viral entry into tumor cells. In contrast,
427 IDH mutation status does not influence the ability of oncolytic viruses to enter tumor
428 cells, thus failing to result in significant differences in patient survival. This important
429 finding suggests that HVEM may serve as a clinically valuable biological marker for
430 future ON-01 therapy, particularly in guiding HSV-1-based oncolytic viral treatment
431 strategies.

432 This study enrolled patients with multifocal intracranial tumors to investigate the
433 effects of oncolytic virus therapy. The results demonstrated that ON-01 not only
434 induced significant oncolytic responses at the injection sites but also led to volume
435 reduction or even complete disappearance of tumors at distant locations. However, the
436 study did not explore systemic and local immune responses in depth, as only
437 preliminary foundational research was conducted. In subsequent clinical studies, we
438 plan to incorporate analyses of immune-related indicators to further elucidate the
439 underlying mechanisms.

440 Regarding the relationship between the efficacy of ON-01 and molecular

441 pathological IDH subtypes, there was no significant correlation. However, only five
442 patients with IDH mutations were included, resulting in a relatively small sample size.
443 Future studies should expand the cohort of IDH-mutant patients to further validate the
444 reliability of this conclusion.

445 The 28-day monitoring period for AEs in this study may be inadequate to fully
446 capture ON-01-related delayed toxicities or cumulative effects, particularly in long-
447 term survivors. We will implement more comprehensive long-term safety monitoring
448 in subsequent studies to address this limitation.

449 In terms of study design, as a phase 1/2 clinical trial, this study primarily focused on
450 short-term safety assessment and preliminary efficacy observation and therefore did not
451 adopt a randomized controlled design. This decision was based on two considerations:
452 first, the use of stereotactic injection, an invasive procedure, made it technically
453 challenging to implement a double-blind design; second, from an ethical perspective,
454 administering placebo injections would not align with medical ethical principles. These
455 limitations will be addressed in subsequent larger-scale clinical trials.

456 In conclusion, the results demonstrated a favorable short-term safety profile of ON-
457 01 intratumoral injection and provides preliminary evidence of its efficacy in patients
458 with recurrent WHO grade 4 malignant gliomas.

459

460 **Funding**

461 Capital's Funds for Health Improvement and Research (CFH, 2020-1-1071).

462

463 **Acknowledgments**

464 We are grateful to the patients and their families for their participation in this clinical
465 trial.

466

467 **Conflict of Interest**

468 None declared.

469

470 **Authorship Statement**

471 FSL and JWZ designed the study. WZ curated the data. PWW and SF performed the
472 formal analysis. FSL acquired funding. FSL and WZ contributed to methodology. FSL
473 and JWZ were responsible for project administration. SQG developed the software to
474 aid data collection. WZ, PWW, and SF contributed to data visualization and drafted the
475 original manuscript. WFJ, SRP, MYW, XYQ, WXZ, JJG, XDS, GQY, JKW, YDL,
476 YWW, HCL, RM, FW, QC, GSJ, and FGM were involved in data investigation. All
477 authors reviewed, edited, and approved the final manuscript. SQG performed the
478 statistical analysis and directly verified the underlying data in the manuscript. All
479 authors had full access to all the data in the manuscript. FSL had final responsibility for
480 the decision to submit for publication.

481

482 **Data Availability**

483 Access to the data will be granted upon submission of a formal application, including
484 a study proposal, to the study's steering committee through the corresponding authors

485 of this Article. Data sharing is contingent upon approval by both the steering committee
486 and the institutional review board.

487

488 **References**

- 489 1. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant
490 and adjuvant temozolomide for glioblastoma. *N Engl J Med.*
491 2005;352(10):987–996.
- 492 2. Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-course radiation plus
493 temozolomide in elderly patients with glioblastoma. *N Engl J Med.*
494 2017;376(11):1027–1037.
- 495 3. Verhoeff JJC, Lavini C, van Linde ME, et al. Bevacizumab and dose-intense
496 temozolomide in recurrent high-grade glioma. *Ann Oncol.* 2010;21(8):1723–
497 1727.
- 498 4. Taal W, Oosterkamp HM, Walenkamp AME, et al. Single-agent bevacizumab
499 or lomustine versus a combination of bevacizumab plus lomustine in patients
500 with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2
501 trial. *Lancet Oncol.* 2014;15(9):943–953.
- 502 5. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M.
503 Management of glioblastoma: State of the art and future directions. *CA Cancer
504 J Clin.* 2020;70(4):299–312.
- 505 6. Lee AH, Sun L, Mochizuki AY, et al. Neoadjuvant PD-1 blockade induces T cell
506 and cDC1 activation but fails to overcome the immunosuppressive tumor

507 associated macrophages in recurrent glioblastoma. *Nat Commun.*
508 2021;12(1):6938.

509 7. Arrieta VA, Dmello C, McGrail DJ, et al. Immune checkpoint blockade in
510 glioblastoma: from tumor heterogeneity to personalized treatment. *J Clin Invest.*
511 2023;133(2).

512 8. Carpenter AB, Carpenter AM, Aiken R, Hanft S. Oncolytic virus in gliomas: a
513 review of human clinical investigations. *Ann Oncol.* 2021;32(8):968–982.

514 9. Desjardins A, Gromeier M, Herndon JE, et al. Recurrent glioblastoma treated
515 with recombinant poliovirus. *N Engl J Med.* 2018;379(2):150–161.

516 10. Todo T, Ito H, Ino Y, et al. Intratumoral oncolytic herpes virus G47Δ for residual
517 or recurrent glioblastoma: a phase 2 trial. *Nat Med.* 2022;28(8):1630–1639.

518 11. Ling AL, Solomon IH, Landivar AM, et al. Clinical trial links oncolytic
519 immunoactivation to survival in glioblastoma. *Nature.* 2023;623(7985):157–
520 166.

521 12. Nassiri F, Patil V, Yefet LS, et al. Oncolytic DNX-2401 virotherapy plus
522 pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. *Nat Med.*
523 2023;29(6):1370–1378.

524 13. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-
525 mutated oncolytic herpes virus G47Δ in patients with progressive glioblastoma.
526 *Nat Commun.* 2022;13(1):4119.

527 14. Todo T, Ito H, Ino Y, et al. Intratumoral oncolytic herpes virus G47Δ for residual
528 or recurrent glioblastoma: a phase 2 trial. *Nat Med.* 2022;28(8):1630–1639.

529 15. Ling AL, Solomon IH, Landivar AM, et al. Clinical trial links oncolytic
530 immunoactivation to survival in glioblastoma. *Nature*. 2023;623(7985):157–
531 166.

532 16. Markert JM, Razdan SN, Kuo HC, et al. A phase 1 trial of oncolytic HSV-1,
533 G207, given in combination with radiation for recurrent GBM demonstrates
534 safety and radiographic responses. *Mol Ther*. 2014;22(5):1048–1055.

535 17. Orvedahl A, Alexander D, Talloczy Z, et al. HSV-1 ICP34.5 confers
536 neurovirulence by targeting the Beclin 1 autophagy protein. *Cell Host Microbe*.
537 2007;1(1):23–35.

538 18. Mozzi A, Cagliani R, Pontremoli C, et al. Simplexviruses successfully adapt to
539 their host by fine-tuning immune responses. *Mol Biol Evol*. 2022;39(7).

540 19. Liu S, Zhang J, Fang S, et al. Antitumor efficacy of oncolytic HSV-1 expressing
541 cytosine deaminase is synergistically enhanced by DPD down-regulation and
542 EMT inhibition in uveal melanoma xenograft. *Cancer Lett*. 2020;495:123–134.

543 20. Zhang J, Wang J, Li M, et al. Oncolytic HSV-1 suppresses cell invasion through
544 downregulating Sp1 in experimental glioblastoma. *Cell Signal*.
545 2023;103:110581.

546 21. Friedman GK, Johnston JM, Bag AK, et al. Oncolytic HSV-1 G207
547 immunotherapy for pediatric high-grade gliomas. *N Engl J Med*.
548 2021;384(17):1613–1622.

549 22. Huang Z, Wu SQ, Liang Y, et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates
550 necroptosis to restrict virus propagation in mice. *Cell Host Microbe*.

551 2015;17(2):229–242.

552 23. Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec
553 improves durable response rate in patients with advanced melanoma. *J Clin
554 Oncol.* 2015;33(25):2780–2788.

555 24. Poh A. First oncolytic viral therapy for melanoma. *Cancer Discov.* 2016;6(1):6.

556 25. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of
557 immunotherapy drugs. *Nat Rev Drug Discov.* 2015;14(9):642–662.

558 26. Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator
559 (HVEM) and HSV-1 gD affect reactivation but not latency levels. *PLoS Pathog.*
560 2023;19(9):e1011693.

561 27. O'Rourke DM, Nasrallah MP, Desai A, et al. A single dose of peripherally
562 infused EGFRvIII-directed CAR T cells mediates antigen loss and induces
563 adaptive resistance in patients with recurrent glioblastoma. *Sci Transl Med.*
564 2017;9(399).

565 28. Duerinck J, Lescrauwaet L, Dirven I, et al. Intracranial administration of anti-
566 PD-1 and anti-CTLA-4 immune checkpoint-blocking monoclonal antibodies in
567 patients with recurrent high-grade glioma. *Neuro Oncol.* 2024;26(12):2208–
568 2221.

569 29. Maschio M, Dinapoli L, Vidiri A, et al. The role side effects play in the choice
570 of antiepileptic therapy in brain tumor-related epilepsy: a comparative study on
571 traditional antiepileptic drugs versus oxcarbazepine. *J Exp Clin Cancer Res.*
572 2009;28(1):60.

573 30. Cloughesy TF, Petrecca K, Walbert T, et al. Effect of vocimagene
574 amiretrorepvec in combination with flucytosine vs standard of care on survival
575 following tumor resection in patients with recurrent high-grade glioma: a
576 randomized clinical trial. *JAMA Oncol.* 2020;6(12):1939–1946.

577 31. Hiraoka K, Inagaki A, Kato Y, et al. Retroviral replicating vector-mediated gene
578 therapy achieves long-term control of tumor recurrence and leads to durable
579 anticancer immunity. *Neuro Oncol.* 2017;19(7):918–929.

580 32. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. *N Engl*
581 *J Med.* 2009;360(8):765–773.

582 33. Mandel JJ, Cachia D, Liu D, et al. Impact of IDH1 mutation status on outcome
583 in clinical trials for recurrent glioblastoma. *J Neurooncol.* 2016;129(1):147–154.

584 34. Desjardins A, Gromeier M, Herndon JE, 2nd, et al. Recurrent glioblastoma
585 treated with recombinant poliovirus. *N Engl J Med.* 2018;379(2):150–161.

586

587 **Figure 1. Trial profile.**

588 ^aPatient No.9 was lost to follow-up in the fifth month. ^bPatient No.4 passed away due
589 to pneumonia in the fourth month and patient No.5 passed away due to a
590 cerebrovascular accident in the seventeenth month.

591

592 **Figure 2. Survival outcomes in patients treated with ON-01.**

593 (A) Progression-free survival in the population treated with ON-01. (B) Overall
594 survival (OS) in all patients treated with ON-01. Shaded areas indicate 95% CIs. Black

595 Crosses denote censored patients, while red Crosses denote patients alive.

596

597 **Figure 3. Summary of radiological responses in patients treated with ON-01.**

598 (A) T1-weighted MRI images at the indicated observation time points for Patient No.
599 3. Following surgical resection of a left thalamic glioma, the patient experienced
600 recurrence after 7 months and subsequently received an ON-01 injection (Figure 3A,
601 red arrow). Serial follow-up MRI examinations demonstrated progressive regression of
602 the recurrent lesion following ON-01 therapy, with near-complete resolution observed
603 at the 18-month follow-up. Subsequent imaging at 32 months post-treatment identified
604 a new lesion at a site distal to the initial ON-01 injection site (Figure 3A, blue arrow),
605 which ultimately led to patient mortality. (B) T1-weighted MRI images at the indicated
606 observation time points for three patients with multifocal lesions. All three patients
607 demonstrated varying degrees of regression at both injected and non-injected lesion
608 sites within 2 months of ON-01 therapy (Figure 3B; injection sites: red arrows, non-
609 injected lesions: yellow arrows). mo, months; wk, weeks.

610

611 **Figure 4. Univariate survival analysis of patients in different groups.**

612 (A) OS of patients with different HVEM expression levels. (B) OS of patients grouped
613 by tumor diameter. (C) OS of patients based on detectable IDH1 status. (D) OS of
614 patients based on MGMT promotor status. (E) OS of patients with either single or
615 multifocal lesions. Crosses denote censored patients.

616

617 **Table 1. Baseline characteristics for all patients.**

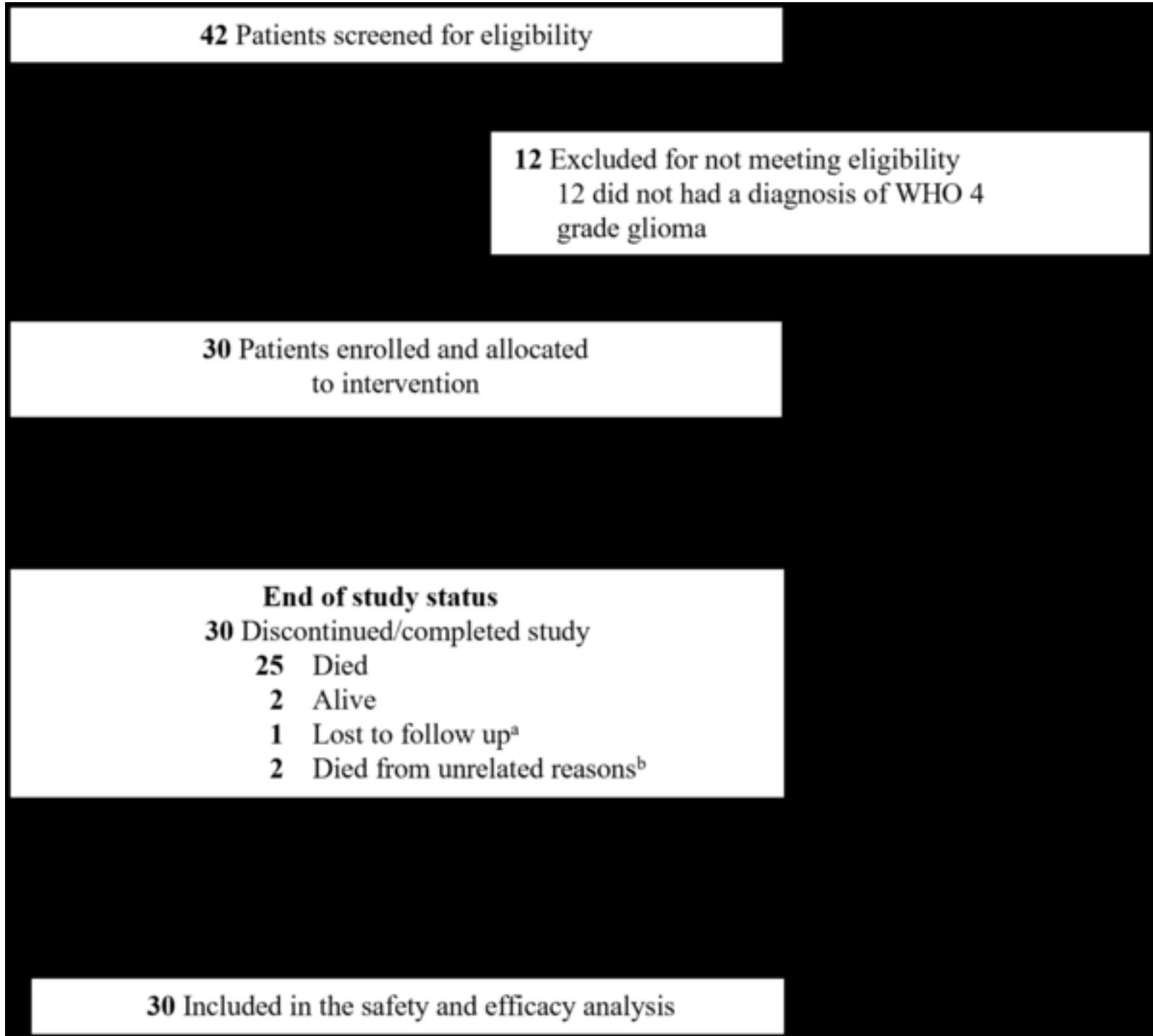
618 **Abbreviations:** KPS, karnofsky performance status; IDH1, isocitrate dehydrogenase 1;
619 HVEM, herpesvirus Entry Mediator; PD-1, programmed death receptor 1; MGMT, O⁶-
620 methylguanine-DNA methyltransferase; TMB, tumor mutational burden; MSI,
621 microsatellite Instability; MSS, microsatellite stable; CR, complete response; PR,
622 partial response; SD, stable disease; PD, progressive disease.

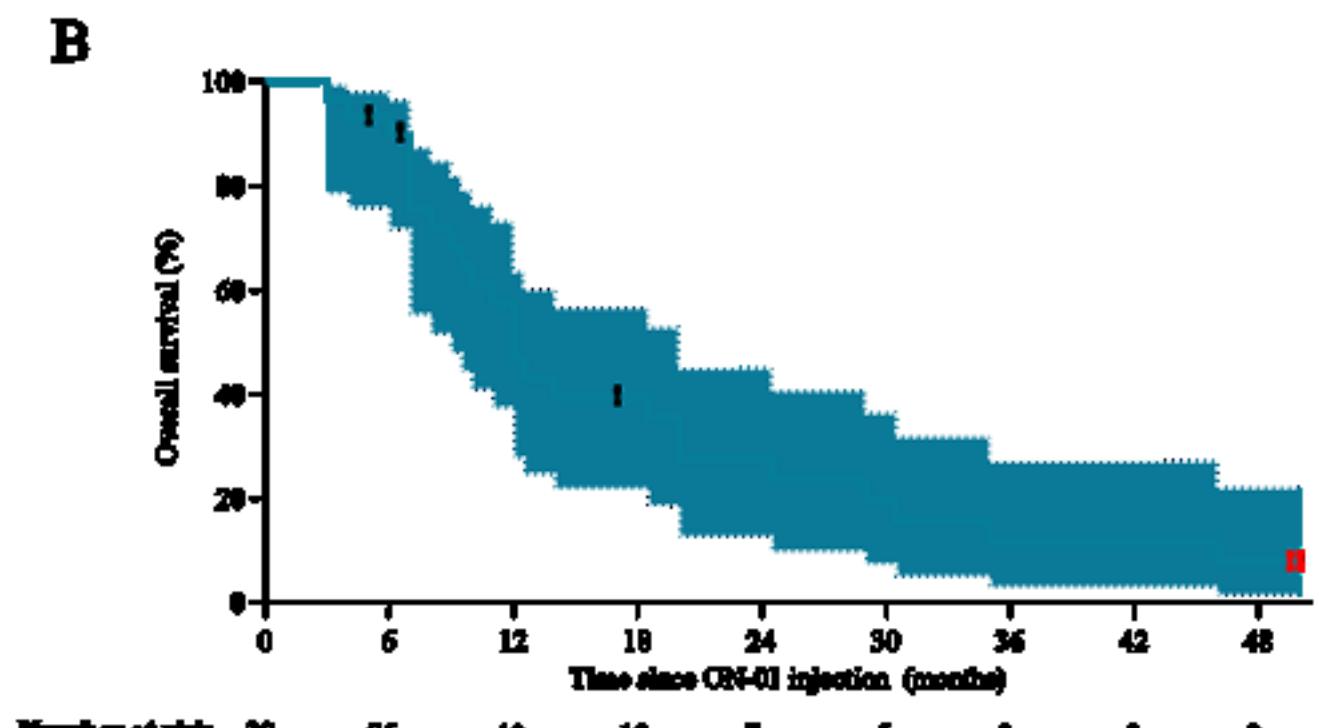
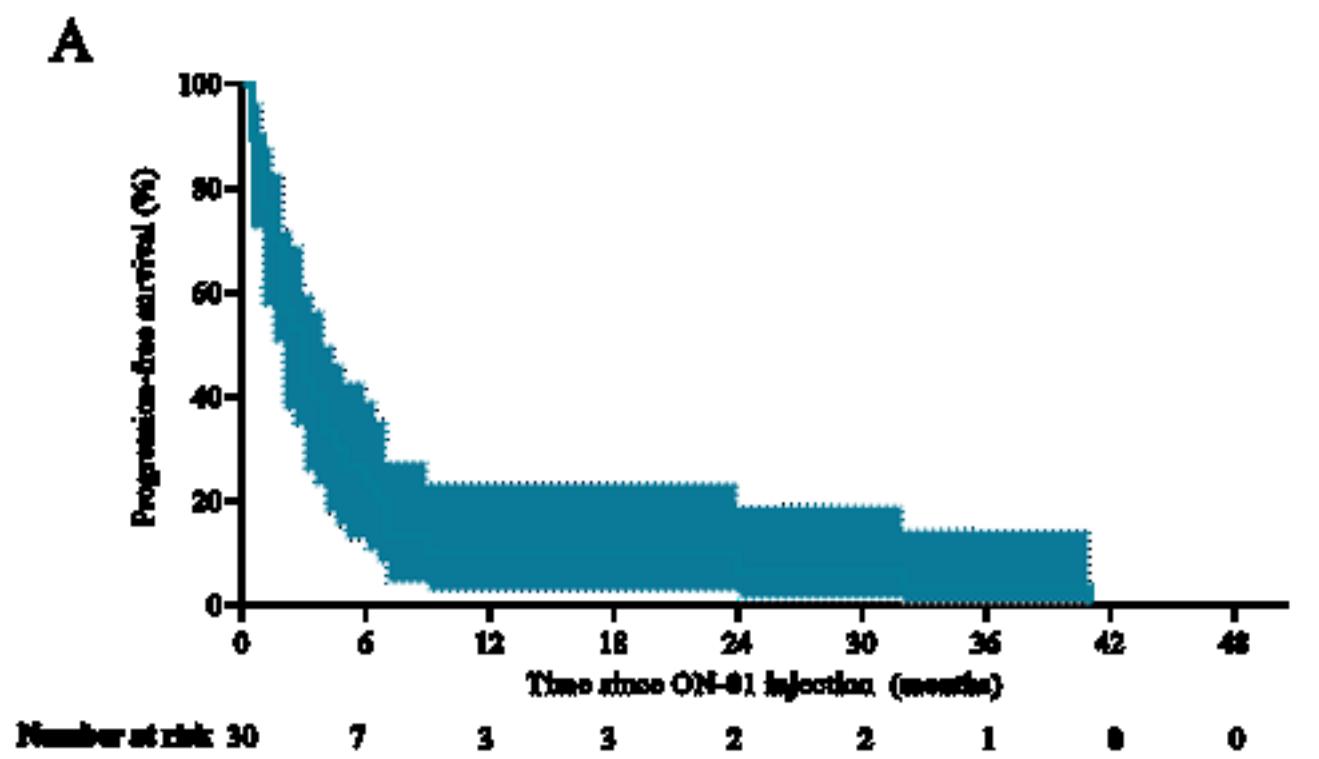
623

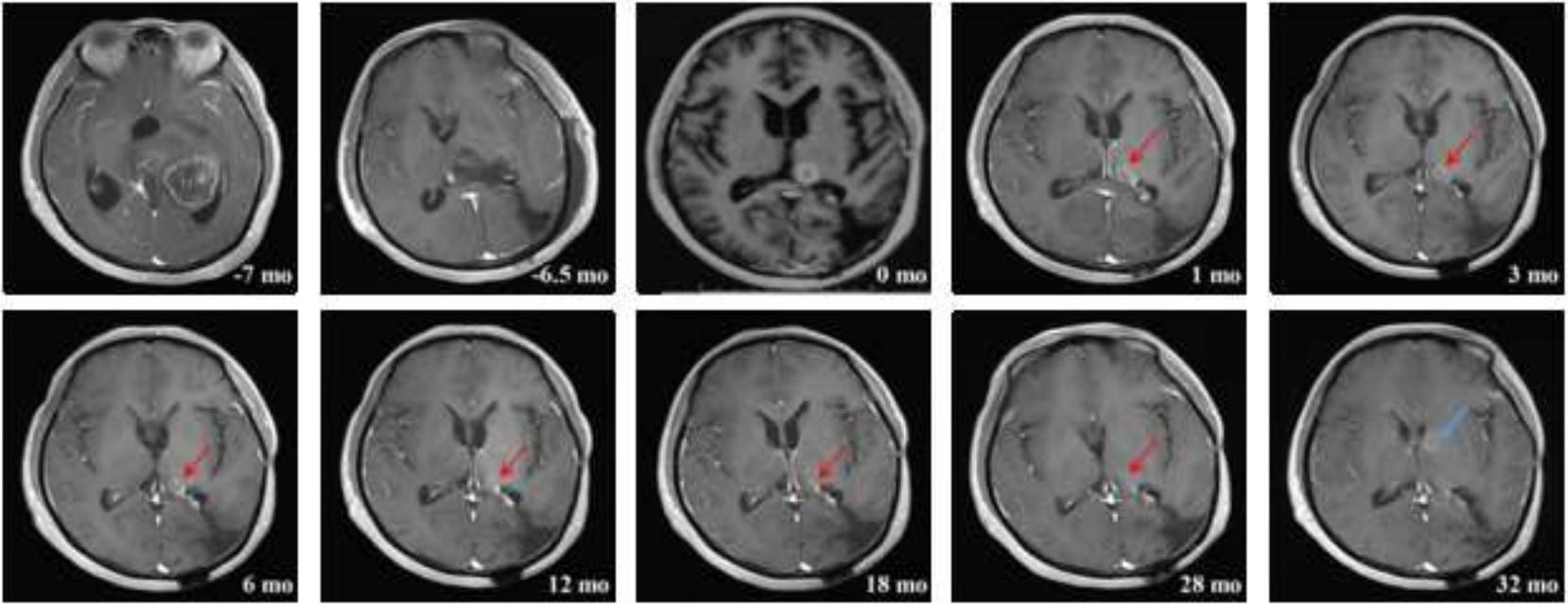
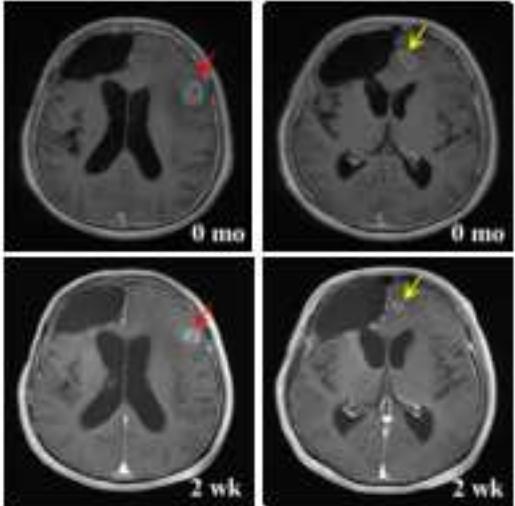
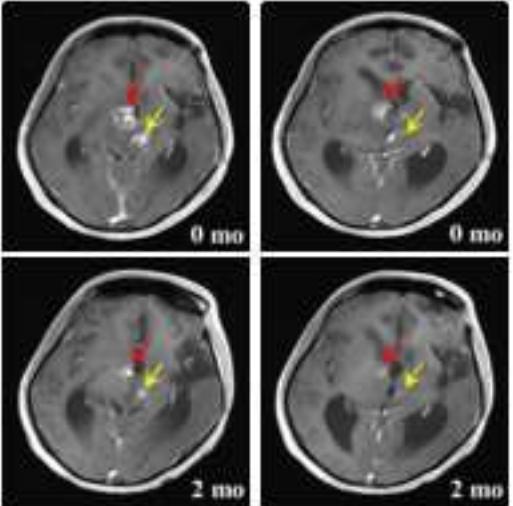
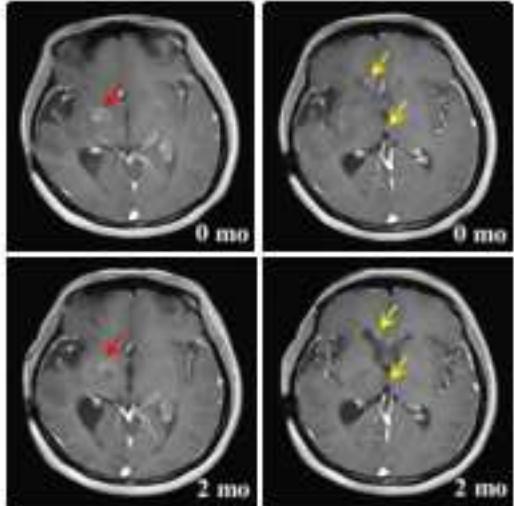
624 **Table 2. Adverse Events, According to Grade, in the 30 Patients.**

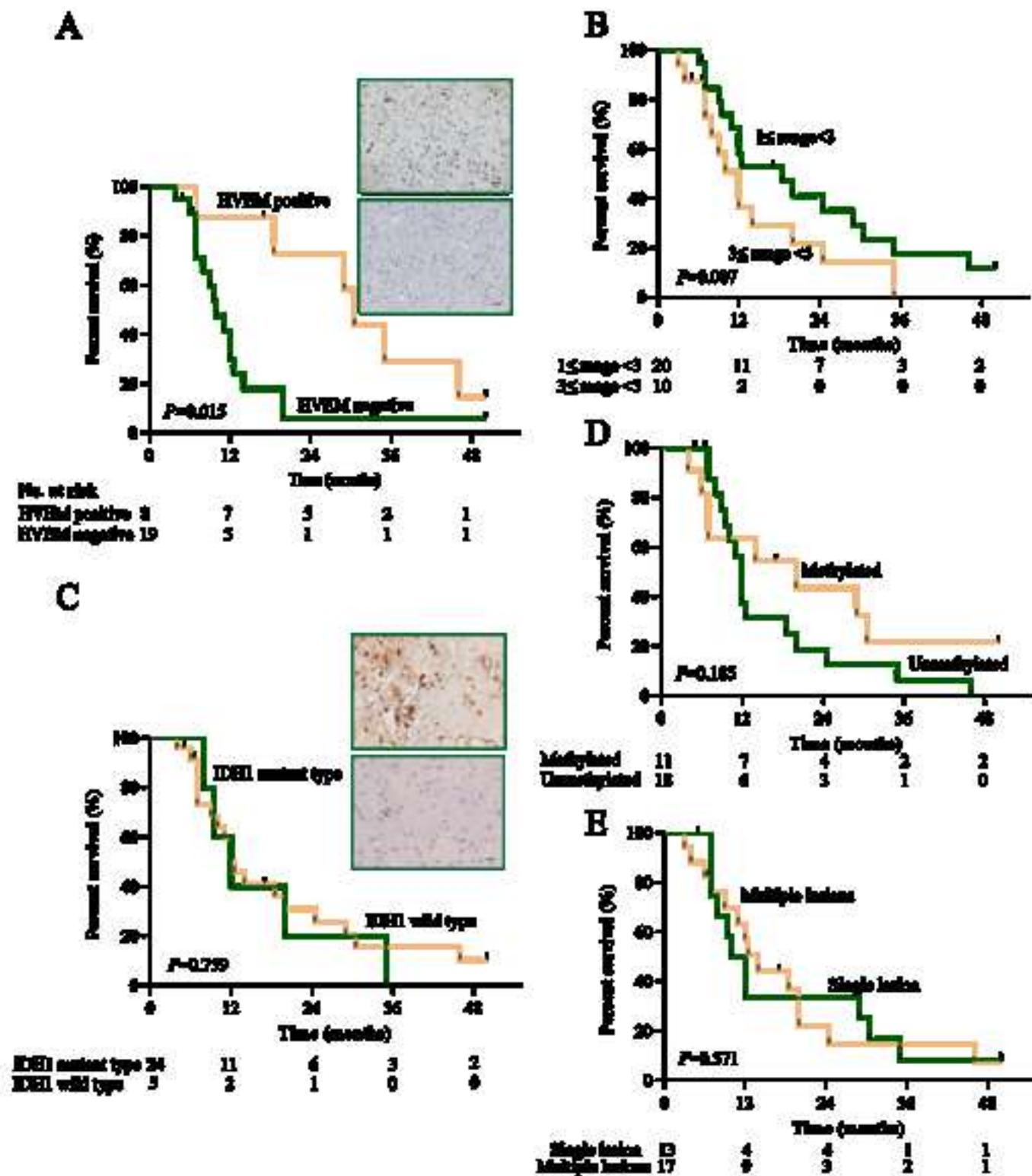
Table 1. Baseline characteristics for all patients.

Clinical characteristics	No. of patients (%)
Gender	
Male	13 (43.3)
Female	17 (56.7)
Age at ON-01 initiation, median (range), yrs	50.0 (22–75)
KPS score, median (range)	80 (60–100)
Number of lesions	
Single	13 (43.3)
Multiple	17 (56.7)
IDH1 status	
Mutant	5 (16.7)
Wild type	24 (80.0)
N/A	1 (3.3)
HVEM expression	
Positive	8 (26.7)
Negative	19 (63.3)
N/A	3 (10.0)
MGMT promotor status	
Methylated	11 (36.7)
Unmethylated	18 (60.0)
N/A	1 (3.3)
TMB	
High (≥ 10 mut/Mb)	14 (46.7)
Low (<10 mut/Mb)	15 (50.0)
NA	1 (3.3)
MSI status	
MSI-high	0 (0)
MSS	29 (96.7)
NA	1 (3.3)
POLE/D1 status	
Mutant	3 (10.0)
Wild type	26 (86.7)
N/A	1 (3.3)
Response to treatment	
CR	2 (6.7)
PR	6 (20.0)
PD	9 (30.0)
SD	13 (43.3)
Retreatment of recurrence post ON-01 injection	
ON-01 re-injection	6 (20.0)
Temozolomide	7 (23.3)
Anti-PD-1 antibody	1 (3.3)
Gamma Knife	1 (3.3)


Re-operation



6 (20.0)





Table 2. Adverse Events, According to Grade, in the 30 Patients.


Adverse Event, n (%)	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
General disorder					
Fever	5 (16.7%)	1 (3.3 %)	/	/	/
Gastrointestinal disorder					
Nausea	1 (3.3 %)	/	/	/	/
Vascular disorder					
Flushing	3 (10.0%)	/	/	/	/
Cardiac disorder					
Ventricular Arrhythmia	1 (3.3%)	/	/	/	/
Nervous system disorders					
Seizure	/	1 (3.3%)	/	/	/
Pyramidal tract syndrome	/	/	1 (3.3%)	/	/
Psychiatric disorder					
Delirium	/	2 (6.7%)	/	/	/
Blood and lymphatic system disorder					
Anemia	5 (16.7%)	1 (3.3 %)	/	/	/
White blood cell count decreased	1 (3.3 %)	/	/	/	/
Platelet count decreased	2 (6.7%)	/	/	/	/
Metabolism and nutrition disorder					
Hyponatremia	7 (23.3%)	2 (6.7%)	1 (3.3 %)	/	/
Hypokalemia	8 (26.7%)	2 (6.7%)	/	/	/
Hypocalcemia	3 (10.0%)	3 (10.0%)	/	/	/

Total No. of Patients	No. of Deaths	Median Survival (95% CI)	Survival Rate% (95% CI)					
			6 mo	12 mo	18 mo	24 mo	30 mo	36 mo
30	25	12.6 mo (9.1-16.3)	89.9 (71.8-96.6)	46.7 (37.8-63.6)	29.5 (21.9-56.9)	27.7 (12.6-45.6)	19.4 (7.4-36.5)	11.9 (3.0-27.3)

A**Patient No.3****B****Patient No.4****Patient No.13****Patient No.27**

