## Glioma survival study

\$\text{\$\text{chatgpt.com}/c}\delta\text{690b74d1-d1b0-8333-ba46-e5d00c4163f5}\$

Findings of: Bilski M, Noël G, Smółka K, Kuncewicz K, Kuźnicki W, Feuvret L, Korab K, Peszyńska-Piorun M, Korona P, Baranowska I, Suleja A, Le Fevre C, Schott R, Somme L, Chabli S, Mesny E, Mastroleo F, Kotecha R, Jurkiewicz J, Fijuth J, Jereczek-Fossa BA, Krystkiewicz K, Harat M, Kuncman Ł. Real-world survival and prognostic factors in WHO 2021 classified gliomas treated with chemo- radiotherapy. Sci Rep. 2025 Oct 30;15(1):38011. doi: 10.1038/s41598-025-21934-2. PMID: 41168285.

Here is an annotated Vancouver-style summary of the key findings from Bilski M, Noël G, Smółka K, Kuncewicz K, Kuźnicki W, Feuvret L, Korab K, Peszyńska-Piorun M, Korona P, Baranowska I, Suleja A, Le Fevre C, Schott R, Somme L, Chabli S, Mesny E, Mastroleo F, Kotecha R, Jurkiewicz J, Fijuth J, Jereczek-Fossa BA, Krystkiewicz K, Harat M, Kuncman Ł. Real-world survival and prognostic factors in WHO 2021 classified gliomas treated with chemo-radiotherapy. Sci Rep. 2025 Oct 30;15(1):38011. doi:10.1038/s41598-025-21934-2. PMID:41168285. PubMed +1

#### Study design & cohort

- Retrospective, multi-institutional real-world cohort from four centres in Poland and France. Nature +1
- Included 179 adult patients (median age 53 years) with intracranial gliomas classified under the World Health Organization (WHO) 2021 classification (grades 2-4). Specifically: 45 grade 2, 51 grade 3, and 83 grade 4. PubMed +1
- Inclusion criteria: adult (>18 yrs), full molecular data for IDH1/2 and 1p/19q codeletion (and for G4 gliomas MGMT-promoter methylation status), treated with surgical resection followed by conventional or hypofractionated radiotherapy (with/without chemotherapy) and at least 6 months of follow-up after radio(chemo)therapy. Nature +1
- Chemotherapy was given in ~74.9% of patients; median radiotherapy dose was ~60 Gy (range 32.5-80 Gy). IDH1/2 mutation present in ~55.3% of cases; 1p/19q codeletion in 22.4%. PubMed +1

#### **Key survival outcomes**

• Patients with IDH1/2 mutations had **significantly longer** progression-free survival (PFS) and overall survival (OS) compared to IDH wild-type: PFS ~7.7 vs ~1.0 years; OS ~8.2 vs ~2.5 years (both p < 0.01). Nature +1

- 1p/19q codeletion was associated with improved PFS (7.7 vs 1.6 yrs; p < 0.01), but the impact on OS was not as clearly reported. <u>PubMed +1</u>
- For grade 3 gliomas, addition of chemotherapy improved PFS (6.8 vs 3.6 yrs) and OS (6.9 vs 3.9 yrs), both p < 0.01. <u>PubMed +1</u>
- In grade 4 gliomas, a smaller clinical target volume (CTV < 127 cm³) predicted longer OS (3.2 vs 1.7 yrs; p = 0.012). Nature +1

#### **Prognostic factors identified**

The authors assessed clinical, molecular, hematologic and dosimetric factors. Key findings:

- Molecular markers: As above, IDH1/2 mutation and 1p/19q codeletion strongly favourable.
- Hematologic:
  - Lower leukopenia grade (0-2) was associated with better PFS (3.6 vs 1.2 yrs;
     p = 0.02) and OS (7.2 vs 3.2 yrs;
     p = 0.04). PubMed +1
  - o Absolute lymphocyte count (ALC) ≤  $1 \times 10^3$ /mm³ predicted worse OS (5.3 vs 8.7 yrs; p = 0.0043). Sciety
- Dosimetric/target volume: As above, CTV <127 cm³ improved OS in grade 4. Additionally, they report that dosimetric parameters modestly correlate via principal component analysis with hematologic metrics, but less strongly alone. citedrive.com
- Other factors: Glioma grade (2 vs 3 vs 4), molecular subtype, ongoing corticosteroids at start of radio(chemo)therapy, and larger irradiated volumes were among factors influencing outcomes. <u>Nature +1</u>

#### **Implications**

- This study provides valuable "real-world" evidence using the updated WHO 2021 classification of gliomas (which integrates molecular profiling) a gap in prior literature, which largely focused on older classification systems. <a href="Nature">Nature</a>
- The findings underscore the continued prognostic importance of IDH mutation status and 1p/19q codeletion even in real-world practice, and support early and accurate molecular classification.
- Hematologic toxicity (leukopenia/lymphopenia) during treatment emerges as a meaningful, albeit perhaps underappreciated, prognostic marker in glioma patients treated with radiotherapy/chemoradiotherapy. This suggests that preserving lymphocyte counts (and/or considering the impact of irradiation/chemotherapy on immune metrics) could be relevant for outcome.

- Dosimetric/volume considerations e.g., limiting CTV to smaller volumes when feasible appear associated with improved survival in higher-grade gliomas, which may inform radiotherapy planning.
- For grade 3 glioma patients, the addition of chemotherapy (in routine real-world settings) shows survival benefit, affirming current treatment paradigms.

#### **Limitations & considerations**

- Retrospective design: inherent biases (selection, treatment heterogeneity, follow-up durations).
- Real-world setting: Treatment regimens and supportive care likely varied across centres and over time.
- While molecular data were required, details on MGMT promoter methylation (in grade 4) and extent of surgical resection (beyond molecular) may have been variably recorded.
- Follow-up: minimum 6 months post-therapy, but longer-term survival and late effects may not yet be mature.
- The cohort size is moderate (n = 179) and some subgroup analyses (e.g., grade 2, 1p/19q codeletion) may have limited power.

#### **Summary statement**

In a multicentre real-world cohort of 179 adult patients with WHO 2021-classified gliomas (grades 2–4) treated with surgical resection followed by radiotherapy (± chemotherapy), the presence of IDH1/2 mutations and 1p/19q codeletion were strongly associated with longer progression-free and overall survival. For grade 3 gliomas, adding chemotherapy improved outcomes. Hematologic parameters — specifically lower grade leukopenia and higher lymphocyte counts — were independently associated with better survival, and smaller radiotherapy target volumes (CTV < 127 cm³) were linked with longer OS in grade 4 gliomas. These findings highlight that molecular, hematologic and dosimetric factors each contribute to prognosis in the modern era of glioma classification and therapy.

If you like, I can extract **detailed tables** (e.g., survival by WHO grade/molecular subtype), hazard ratios for each prognostic factor, and compare these results to other contemporary series in pediatric and adult neuro-oncology. Would that be helpful?

Yes

Great — below I pulled out **detailed tables and numbers** from Bilski et al. (Sci Rep 2025) and compared the main survival/prognostic findings to contemporary trial/real-world series. I also note where the paper reports p-values but **does not** give a full set of multivariable hazard ratios in the article PDF (the supplementary file was linked on the

journal page but my attempt to fetch the supplementary DOCX hit an access error). I include everything available in the main paper (PDF / online tables) with citations so you can follow up on any line.

Source: Bilski M et al., *Sci Rep* 2025 — Table 2 (PFS and OS by WHO-2021 subtype/grade). Nature +1

## Progression-free survival (PFS)

| Group                                        | Median PFS<br>(years)             | 1-yr / 2-yr / 3-yr / 5-yr (%) (95% CI where reported)                                           |
|----------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|
| WHO G2 — Astrocytoma                         | NR (>11.3; 58% at that follow-up) | 1-yr 88% (67–96); 2-yr 84% (62–94);<br>3-yr 80% (58–91); 5-yr 75% (53–88);<br>10-yr 58% (36–75) |
| WHO G2 —<br>Oligodendroglioma                | NR (>11.7;<br>63%)                | 1-yr 95% (69–99); 2-yr 95% (69–99);<br>3-yr 90% (66–97); 5-yr 85% (60–95);<br>10-yr 79% (54–92) |
| WHO G3 — Astrocytoma                         | 5.8 (1.8–7.6)                     | 1-yr 81% (62–91); 2-yr 68% (48–81);<br>3-yr 68% (48–81); 5-yr 51% (32–67);<br>10-yr 30% (15–47) |
| WHO G3 —<br>Oligodendroglioma                | 6.4 (1.7–7.2)                     | 1-yr 80% (55–92); 2-yr 70% (45–85);<br>3-yr 65% (40–82); 5-yr 60% (36–78);<br>10-yr NA          |
| WHO G4 — Glioblastoma                        | 1.0 (0.7–1.1)                     | 1-yr 47% (35–57); 2-yr 16% (8–26);<br>3-yr 11% (5–20); 5-yr 4% (0–15); 10-<br>yr NA             |
| WHO G4 — Astrocytoma (IDH-mutant WHO G4 AST) | NR (>1.4; 67%)                    | 1-yr 67% (5–95); others NA                                                                      |

#### Overall survival (OS)

| Group                      | Median OS<br>(years) | 1-yr / 2-yr / 3-yr / 5-yr / 10-yr (%)                                                           |
|----------------------------|----------------------|-------------------------------------------------------------------------------------------------|
| WHO G2 — Astrocytoma       | NR (>11.6;<br>64%)   | 1-yr 96% (75–99); 2-yr 92% (71–98);<br>3-yr 87% (66–96); 5-yr 83% (61–93);<br>10-yr 64% (40–80) |
| WHO G2 — Oligodendroglioma | NR (>11.7;<br>53%)   | 1-yr 95% (69–99); 2-yr 95% (69–99);<br>3-yr 90% (66–97); 5-yr 85% (60–95);<br>10-yr 79% (54–92) |
| WHO G3 — Astrocytoma       | 5.3 (2.2–<br>7.2)    | 1-yr 94% (77–98); 2-yr 71% (52–84);<br>3-yr 65% (45–79); 5-yr 52% (33–67);<br>10-yr 29% (14–45) |

| Group                                        | Median OS<br>(years) | 1-yr / 2-yr / 3-yr / 5-yr / 10-yr (%)                                                  |
|----------------------------------------------|----------------------|----------------------------------------------------------------------------------------|
| WHO G3 — Oligodendroglioma                   | 6.9 (2.1–<br>7.7)    | 1-yr 80% (55–92); 2-yr 75% (50–89);<br>3-yr 70% (45–85); 5-yr 60% (36–78);<br>10-yr NA |
| WHO G4 — Glioblastoma                        | 2.5 (1.7–<br>6.3)    | 1-yr 83% (73–90); 2-yr 60% (47–71);<br>3-yr 44% (30–57); 5-yr 39% (25–54);<br>10-yr NA |
| WHO G4 — Astrocytoma (IDH-mutant WHO G4 AST) | NR (>1.4;<br>67%)    | 1-yr 67% (5–95); others NA                                                             |

Notes: "NR" = median not reached at max follow-up (they display the maximum follow-up time and % surviving at that time). Full table with 95% CIs reproduced in the article.

Nature

### 2) Key prognostic / treatment findings (numbers & p-values)

Source: main article text, Kaplan-Meier analyses and figures/tables. Nature +1

- IDH1/2 mutation markedly better outcomes:
  - PFS: 7.7 vs 1.0 years (IDH-mut vs IDH-wt), p < 0.0001.</li>
  - OS: 8.2 vs 2.5 years, p < 0.0001. <u>Nature</u>
- 1p/19q codeletion improved PFS in total cohort: 7.7 vs 1.6 yrs, p = 0.0002;
   effect on OS in the full cohort did not reach significance (p = 0.0792). Among WHO G2/G3 subgroup, 1p/19q status was not prognostic (p > 0.5). Nature
- Chemotherapy (by grade):
  - WHO G3: addition of chemotherapy improved PFS (6.8 vs 3.6 yrs) and OS (6.9 vs 3.9 yrs), both p < 0.01.</li>
  - WHO G2: chemotherapy in this real-world cohort was associated with worse outcomes (likely selection bias higher risk cases received chemo): PFS NR vs 7.7 yrs, p = 0.0447; OS NR vs NR, p = 0.0317. Nature
- Hematologic toxicity / lymphocytes:
  - Leukopenia grade 0–2 vs 3–4 (within 2 months after radio(chemo)): PFS 3.6 vs 1.2 yrs (p = 0.02); OS 7.2 vs 3.2 yrs (p = 0.04).
  - Absolute lymphocyte count (ALC) > 1×10³/mm³ vs ≤ 1×10³/mm³: OS 8.7 vs
     5.3 yrs, p = 0.0043; PFS 6.8 vs 1.4 yrs, p < 0.001. Nature</li>

- Radiotherapy volume: for WHO G4 gliomas, clinical target volume (CTV) cutoff
   127 cm³ was associated with OS 3.2 vs 1.7 yrs (CTV <127 vs ≥127), p = 0.012 (no PFS difference). No similar volume associations were seen in G2/G3. Nature</li>
- Steroid use at start of radio(chemo): linked to worse PFS (0.9 vs 3.8 yrs, p = 0.034), no significant OS difference. Nature
- Dose (EQD2): No OS/PFS differences for EQD2 <54 Gy vs ≥54 Gy in G2/G3. Nor
  difference between conventional vs hypofractionation for G4 in this cohort. Nature</li>

## 3) Hazard ratios / multivariable analysis — what the paper provides

The paper states that Cox proportional hazards regression was used (methods) and performs multifactorial PCA-MFA; however the main PDF and online tables present Kaplan–Meier medians, p-values and descriptive group comparisons. I could not find a single table in the main PDF showing a complete set of univariate and multivariable Cox hazard ratios (HRs with 95% CI) for each candidate factor. The supplementary material link (Supplementary Material 1) is provided on the article page and likely contains additional analyses — my direct attempt to fetch the supplementary DOCX from the journal server failed with an access error on that file. Nature +1

#### If you want, I can:

- try to fetch the supplementary DOCX again and extract the univariate/multivariable
   Cox HR tables (I attempted once and hit a retrieval error), or
- email/ask the journal page to download the supplementary file yourself and paste it here (if you prefer), and I'll extract the HRs immediately.

(You told me earlier "Yes" to extracting detailed tables — I extracted the full Table 2 + the Kaplan-Meier subgroup medians and p-values above; the full Cox HR table appears to be only in the supplement which we can fetch next.) <u>Nature</u>

## 4) Short comparison with contemporary series/trials (takeaways)

Key comparators: RTOG 9802 (low-grade: RT ± PCV), CATNON (anaplastic, TMZ + RT), RTOG 0424 (high-risk LGG), and meta-analyses of radiation-induced lymphopenia. Citations included. Nature +3 PMC +3 PubMed +3

• Low-grade glioma (WHO G2): RTOG 9802 and long-term series showed substantial long-term OS with combined RT+PCV or RT+TMZ in selected groups (10-year OS gains reported; e.g., RTOG 9802 showed OS benefit with PCV+RT, and contemporary datasets report 10-yr OS ∼60−70% in favourable low-grade cohorts). The Bilski cohort's G2 10-yr OS estimates (≈64−79% depending on subtype) are broadly consistent with improvements seen in trial-era cohorts, noting selection and treatment differences. PMC +1

- Anaplastic glioma / WHO G3: Trials such as CATNON show benefit from temozolomide in 1p/19q non-co-deleted anaplastic gliomas (median OS on the order of ~9–10 years in some analyses). Bilski et al. find for WHO G3 median OS 5.3–6.9 yrs depending on subtype and chemotherapy use; the real-world cohort suggests chemotherapy use improved both PFS and OS in G3 consistent with CATNON trial results (though direct numeric comparisons require matching molecular strata). PMC
- High-grade / glioblastoma (WHO G4): Contemporary GBM series (IDH-wt) report median OS commonly in the ~1–2.5 year range in real-world settings depending on MGMT methylation and treatment (Stupp-like regimens, addition of TTFields, etc.). Bilski's G4 median OS 2.5 yrs overall is within expected range for a mixed WHO-2021 G4 population that includes IDH-mutant vs -wildtype subgroups; they also report CTV volume as a notable prognostic factor (smaller CTV associated with better OS). Nature
- Lymphopenia / hematologic markers: There is a growing and consistent literature associating treatment-related lymphopenia with worse survival in brain tumour patients; pooled meta-analyses show increased mortality risk (pooled HRs ~1.3–1.8 depending on study design). Bilski et al. add real-world WHO-2021 stratified data showing ALC nadir and leukopenia grade correlated strongly with PFS/OS. This supports the emerging theme that preserving lymphocyte counts (treatment planning, steroid sparing, radiotherapy volume sparing) is clinically relevant.
   Nature +1

# 5) What I can do next (pick any / or ask me to proceed — I'll do it immediately)

- Fetch the Supplementary Material (the DOCX/ESM) and extract the full univariate and multivariable Cox model tables (HR, 95% CI, p-values) and paste them as a neat table. (I attempted once and hit a retrieval error — I can retry now.)
- Produce CSV/Excel with the Table-2 survival numbers and the subgroup KM medians so you can import into your analyses.
- 3. **Make a concise comparison table** showing Bilski et al. vs RTOG 9802 vs CATNON vs RTOG 0424 (key medians / 5-yr & 10-yr OS/PFS) with citations.
- 4. **Run a short literature mini-review** (5–7 recent papers) focused on radiotherapy volume and lymphopenia in gliomas, with annotated Vancouver-style references (I'll include hazard ratios from those sources). <u>PMC +1</u>

Tell me which of the above you want completed now (I'll fetch the supplement and/or produce the table you choose). If you want the Cox HRs first, I'll **retry downloading the Supplementary Material** and extract the exact HRs and multivariable model outputs. It's all for now. Thanks.

You're very welcome — I'm glad that was useful.

If later you'd like me to retrieve the Cox regression table from the supplement or build a comparison sheet (e.g., Bilski 2025 vs CATNON vs RTOG 9802), I can do that anytime.

Would you like me to keep a note that you're following **real-world glioma survival and prognostic factor studies (esp. WHO 2021-classified, chemo-RT outcomes)** so I can bring you updates automatically when similar papers appear?