Clinical trial design in cancer neuroscience

\$\text{\$\text{chatgpt.com}/c}\$ chatgpt.com/c/68efdcf8-6ff4-832d-bc4e-abbde74575ca

Summarize the findings of: Jones G, Anderson JL, Nguyen PTT, Gleber-Netto FO, Hwang WL, Puduvalli VK, Monje M, Amit M. Novel approaches to clinical trial design in cancer neuroscience. Neuron. 2025 Sep 3;113(17):2791-2813. doi: 10.1016/j.neuron.2025.08.015. PMID: 40907474.

Here is a summary of the key findings and proposals from Jones et al. (2025), "Novel approaches to clinical trial design in cancer neuroscience" ResearchGate +3 Cell +3 PubMed +3

Background and motivation

- The field of cancer neuroscience investigates bidirectional interactions between the nervous system (neurons, glia, neural circuits) and cancer cells. PubMed +1
- · These interactions create novel vulnerabilities, but translating mechanistic insights into therapies faces unique challenges. Cell +1
- Key barriers include: limited biomarkers, concerns over neurotoxicity, difficulties in designing trials that address both anticancer and neurologic outcomes, and the inherent complexity of nervous-system–tumor crosstalk. Cell +2 ResearchGate +2

Major proposals and innovations in trial design

Jones et al. lay out several complementary strategies to accelerate and de-risk clinical translation in this domain. Below are the main ones:

1. Drug repurposing / "dual-use" agents

- Use of neuroactive drugs or compounds with known safety profiles (in neurology/psychiatry) to target neural-tumor signaling (e.g. glutamatergic, adrenergic, neurotrophic pathways). Cell +2 Cell +2
- Emphasis on dual-use agents i.e. drugs that might concurrently mitigate neural damage (neuroprotection) while exerting anti-tumor effects. PubMed +2 Cell +2

2. Biomarker development and integration

- A major bottleneck is the paucity of reliable biomarkers that reflect neural-tumor interactions, neural toxicity, or dynamic changes over time. Cell +4 Cell +4 Cell +4
- The authors argue for investment in fluid biomarkers (e.g. CSF, plasma), neuroimaging, electrophysiologic measures, and integrated multi-modal readouts to stratify patients, detect on-target effects, and monitor toxicity. Cell +2 Cell +2

3. Innovative trial formats / master protocols

- Master protocols, platform trials, and umbrella/basket designs can allow multiple
 agents targeting neural-tumor axes to be tested in parallel, sharing control arms and
 resources. Cell +2 Cell +2
- Window-of-opportunity trials: short, mechanistic trials given before standard therapy (or in a presurgical window) to test target engagement, biomarker modulation, or neural endpoint effects without requiring long-term endpoints. <u>Cell +2 Cell +2</u>
- The authors also emphasize adaptive designs, interim analyses, biomarker-guided arms, and patient-centered endpoints as part of the toolkit.
 ResearchGate +3 Cell +3 Cell +3

4. Neurotoxicity mitigation and patient-centered outcomes

- Because many cancer therapies (and repurposed neural-targeting agents) risk neurotoxic effects (cognitive decline, peripheral neuropathy, neural injury), trial designs must explicitly account for neural safety. <u>Cell +2 Cell +2</u>
- Trials should include neurocognitive, functional, quality-of-life, and neurologic endpoints, not only tumor-centric metrics. <u>PubMed +2 Cell +2</u>
- Strategies to mitigate neurotoxicity (dose modulation, scheduling, local delivery) should be embedded in design where possible. <u>Cell +1</u>

5. Iterative and cross-disciplinary collaboration

- The authors call for tight integration between neuroscience, oncology, clinical trialists, biomarker scientists, and statisticians to co-design trials. <u>Cell +2 Cell +2</u>
- They propose that foundational preclinical–translational pipelines be better aligned with trial designs, so that mechanistic insights (from animal/neural models) inform biomarker/endpoint choices. <u>Cell +2 Cell +2</u>

Strengths, challenges, and considerations

Strengths:

- The proposals are well matched to the complexity of neural–cancer interactions; they aim to reduce risk and accelerate translation.
- Emphasis on using agents with known safety profiles (repurposing) can shorten timeto-clinic.
- Use of master protocols, adaptive designs, and biomarker-driven trials is consistent with modern trends in precision oncology.

· Challenges and caveats:

- Biomarker development remains difficult, especially for sensitive, dynamic neural endpoints.
- Neural safety is a hard bar unintended neurotoxicity could derail a trial even if antitumor effects are promising.
- The complexity and cost of master/adaptive trials, and regulatory acceptance of novel designs, can be barriers.
- Integrating multiple endpoints (tumor response + neural function) demands careful statistical planning and endpoint hierarchy.
- The field is nascent; there is limited clinical precedent, so many proposed designs will need proof-of-concept.

Overall takeaway

Jones et al. argue that to realize the promise of *cancer neuroscience*, we must move beyond conventional trial paradigms. Their review outlines a roadmap: combining drug repurposing, rich biomarker strategies, adaptive master protocols, and neural safety endpoints — all built through interdisciplinary collaboration — to enable rigorous, efficient, and patient-centered trials.

<u>Cell +2 Cell +2</u>

If you like, I can also extract and present a critical appraisal (strengths, weaknesses, open questions) or transform this into a slide-friendly summary. Do you want me to prepare that? extract and present a critical appraisal

Here's a **critical appraisal** of *Jones et al., "Novel approaches to clinical trial design in cancer neuroscience"* (Neuron, 2025), focusing on its conceptual, methodological, and translational implications.

Aspect	Appraisal
Integration of two disciplines	The paper successfully bridges oncology and neuroscience, highlighting how the nervous system actively contributes to tumor growth and therapeutic resistance — a conceptual advance beyond seeing neural effects merely as "side effects."
Reframing clinical endpoints	It pushes the field to measure <i>both</i> tumor and neural outcomes (e.g., cognition, circuit integrity, quality of life), making the case for patient-centric trials.
Rational roadmap	The framework (repurposing → biomarker integration → adaptive/multi-arm trials) mirrors successful strategies in immuno-oncology, positioning cancer neuroscience for similar evolution.

Aspect	Appraisal	
Master and adaptive trial designs	A major strength. These formats can accelerate early-phase learning and reduce patient burden, especially for rare CNS tumor subtypes.	
Window-of- opportunity trials	Provides a practical solution for testing mechanistic hypotheses (e.g., neural circuit modulation, target engagement) pre-treatment or perioperatively.	
Biomarker emphasis	Strongly argued; multimodal readouts (CSF, plasma, imaging, electrophysiology) could help capture dynamic neuro-tumor crosstalk. However, the authors acknowledge that many of these biomarkers are <i>not yet validated</i> for regulatory endpoints.	
Aspect	Strengths	Limitations / Risks
Drug repurposing	Fast track to clinical testing; leverages existing neuroactive compounds with known safety profiles.	Mechanistic pleiotropy of neuroactive drugs may complicate attribution of observed effects. Many repurposed agents have CNS side effects that could confound neural endpoint interpretation.
Neurotoxicity monitoring	A forward-looking inclusion of neurocognitive and electrophysiologic endpoints.	Neurotoxicity quantification remains inconsistent across centers; longitudinal follow-up will be resource-intensive.
Patient- centered endpoints	Broadens what "success" looks like beyond tumor shrinkage.	Regulators and sponsors may resist shifting away from standard oncologic endpoints (e.g., PFS, OS) without surrogate validation.

4. Implementation challenges

- Regulatory landscape: Adaptive/master protocols are still relatively new in neuro-oncology; their acceptance by regulatory agencies (FDA, EMA) for "neural efficacy" outcomes remains uncertain.
- **Statistical complexity:** Combining oncologic and neurologic endpoints introduces multiplicity and competing risks, demanding sophisticated statistical modeling.
- Cohort heterogeneity: Neural-tumor interactions differ across cancer types (e.g., gliomas vs. perineural invasion in head and neck cancers), limiting the universality of any single design.
- **Infrastructure needs:** Trials require neuroimaging, neurophysiology, and cognitive testing capacity not standard in most oncology centers.
- Ethical considerations: Early "window" trials may expose patients to experimental neural agents with unclear anti-tumor benefit; careful consent and risk—benefit balancing are critical.

Category	Evaluation
Novelty	High — first comprehensive framework for clinical trial design in cancer neuroscience.
Rigor	Conceptually strong, though empirical examples are limited.
Clinical relevance	High for both neuro-oncology and systemic cancers with neural invasion.
Translatability	Promising but dependent on biomarker validation and regulatory evolution.
Limitations	Lack of real-world pilot data; reliance on analogy to other oncology paradigms.

6. Key open questions

- 1. How can neural-tumor biomarkers be standardized across sites for regulatory submission?
- 2. Can adaptive designs meaningfully integrate neurologic and oncologic endpoints within shared statistical frameworks?
- 3. What governance model ensures that cross-disciplinary trial teams (oncology + neuroscience) function cohesively?
- 4. Which early-phase successes could establish proof-of-concept (e.g., glutamatergic blockade in glioma, β-adrenergic inhibition in perineural invasion)?
- 5. How will patient-reported and cognitive outcomes be weighed against tumor control in future composite endpoints?

Summary Judgment

Jones et al. (2025) deliver a landmark conceptual roadmap for the *clinical translation* of cancer neuroscience. Their proposals — biomarker integration, adaptive protocols, neural safety, and interdisciplinary collaboration — are compelling and forward-looking.

However, the paper remains largely aspirational: it offers a *design philosophy* rather than ready-to-execute blueprints. The next step will require pilot "hybrid" trials to test these concepts in practice, ideally beginning within glioma or perineural invasion models where neuro-tumor signaling is best characterized.

Would you like me to create a **2-slide summary version** of this appraisal (e.g., for journal club or lab meeting)? It would distill these points into concise visual bullets.

Yes

Here's a **two-slide summary outline** for your journal club or lab meeting presentation on: **Jones et al.**, "**Novel approaches to clinical trial design in cancer neuroscience.**" **Neuron**, **2025**

Title: Redesigning Trials for Cancer Neuroscience

11 Rationale

- The nervous system is an active participant in tumor progression and treatment response.
- Current trials overlook neural-tumor crosstalk and neurotoxicity outcomes.
- Goal: integrate neuroscience principles into oncology trial design.

Key Proposals

Strategy	Purpose
Drug repurposing (neuroactive/dual-use agents)	Leverage known safety profiles to target neural-tumor signaling.
Biomarker integration	Combine CSF/plasma, imaging, and electrophysiologic metrics for real-time neural and tumor monitoring.
Innovative trial formats	Use adaptive, master, and window-of-opportunity designs to accelerate discovery.
Neurotoxicity and QoL endpoints	Shift toward patient-centered outcomes beyond PFS/OS.
Interdisciplinary design	Embed neuroscientists in every stage of oncology trials.

Conceptual Impact

- Reframes cancer neuroscience from mechanistic discovery → clinical translation.
- Proposes a trial ecosystem parallel to what immuno-oncology achieved a decade ago.

🧩 Slide 2 — Critical Appraisal & Outlook

Strengths

- · Visionary integration of neuroscience + oncology.
- Emphasis on biomarker-driven, adaptive frameworks.
- Promotes neuroprotective strategies and holistic endpoints.
- Aligns with precision oncology's move toward mechanism-based trials.

Limitations / Challenges

· Limited validated neural biomarkers.

- Statistical and regulatory hurdles for hybrid endpoints.
- Infrastructure gap (neuroimaging, cognitive testing in oncology sites).
- Ethical and logistical complexities in window-of-opportunity trials.
- Paper remains conceptual few pilot data examples.

Future Directions

- Develop standardized neural biomarkers for target engagement & toxicity.
- Launch hybrid proof-of-concept trials (e.g., glutamatergic or adrenergic blockade).
- Create *cross-disciplinary trial networks* joining neuro-oncology, neurology, and systems neuroscience.
- Embed patient-reported and cognitive outcomes into early-phase studies.

Take-home message

Jones et al. chart the blueprint for the next generation of cancer neuroscience trials — conceptually strong, clinically ambitious, and awaiting real-world validation.

Would you like me to generate these two slides as a **PowerPoint (.pptx)** file with formatted layout (titles, bullet visuals, and citation footer)?

No. It's all. Thank you.

[15 Oct 2025]