Musatova O, et al., Immune checkpoints in immune response to glioma: two sides of the same coin.

Here is a summary of the **key findings and insights** from *Musatova O, Kumar V, Vinogradov K, Rubtsov Y. "Immune checkpoints in immune response to glioma: two sides of the same coin." Front Immunol.* 2025 Aug 15;16:1639521 Frontiers+1

Overview & Rationale

- Gliomas (especially glioblastoma, GBM) create a strongly immunosuppressive tumor microenvironment (TME) which helps tumor cells evade immune elimination. PMC+1
- One of the major immune-regulatory systems exploited by tumors is the immune checkpoint network — i.e., ligands and receptors that restrain or modulate T cell activation and function.
 Frontiers+1
- This review examines both canonical (PD-1/PD-L1, CTLA-4) and non-canonical / emerging immune checkpoints in gliomas, their co-expression, signaling, prognostic relevance, and therapeutic implications. PMC+2Frontiers+2

Key Findings & Themes

1. Diversity of immune checkpoints in glioma / TME

- Beyond PD-1/PD-L1 and CTLA-4, gliomas show expression (on tumor cells, immune infiltrates, or stromal elements) of alternative checkpoints or regulatory molecules, such as TIM-3, LAG-3, TIGIT, IDO1, CD39, CD73, adenosine/A2A receptor axis, B7 family members, and soluble or enzymatic mediators. Frontiers+1
- Some of these molecules act via metabolic or enzymatic suppression (e.g., CD39/CD73 converting ATP to immunosuppressive adenosine) rather than only classical receptor–ligand inhibition. PMC+1

2. Co-expression, synergy, and networked suppression

- Many immune checkpoints are co-expressed in gliomas (on the same or adjacent cells), forming a suppressive "network" rather than isolated axes. Frontiers+1
- Such co-expression may result in redundancy and compensatory pathways of immunosuppression — blocking one checkpoint may lead to upregulation or compensation

by another. PMC+1

3. Grade and molecular subtype associations

- High-grade gliomas (HGG) tend to have broader and higher expression of immune checkpoints compared to low-grade gliomas (LGG). PMC+1
- Many checkpoint molecules correlate with "worse" molecular features (e.g. IDH wild type, mesenchymal subtype) and with poorer prognosis. Frontiers+1
- Interestingly, one exception is B7-H7 / HHLA2, which in some LGGs is more frequently expressed and is associated with better prognosis (unlike most other checkpoints). PMC

4. Prognostic correlations

- Expression levels of various immune checkpoints are often associated with patient survival metrics. For many checkpoints, higher expression correlates with worse prognosis in HGG and LGG. PMC+1
- However, the picture is complex: the prognostic impact may depend on context (coexpression, tumor subtype, spatial localization) and may differ between grades. PMC

5. Therapeutic implications and challenges

- Checkpoint blockade (e.g. anti-PD-1, anti-CTLA-4) is promising in principle but has had limited success in glioma to date. Frontiers+1
- The authors argue that monotherapy blocking a single checkpoint is unlikely to be sufficient, due to redundant immunosuppressive pathways and compensatory mechanisms.
 PMC+2Frontiers+2
- Combination therapies (e.g. dual checkpoint blockade, or combining checkpoint inhibitors with other immunotherapies) may be more effective. PMC+1
- They note ongoing trials targeting LAG-3, TIM-3, TIGIT, IDO1, CD39, CD73 in GBM. PMC+1
- The authors also highlight issues such as tumor heterogeneity, blood-brain barrier penetration, and potential adverse effects. Frontiers+1
- Personalized approaches (e.g. based on transcriptomic, proteomic, metabolomic profiles)
 may be key to selecting optimal checkpoint combinations for individual patients. PMC+1

6. "Two sides of the same coin" concept

- The title reflects the dual role of immune checkpoints: in normal physiology, they maintain immune homeostasis and prevent autoimmunity; in glioma, the same mechanisms are coopted to foster immune evasion. Frontiers+1
- That is, immune checkpoint pathways are not inherently "bad," but contextually manipulated in cancer. This dual nature suggests careful therapeutic targeting is needed to avoid

Limitations & Gaps Highlighted

- Many of the discussed immune checkpoint associations are based on expression / correlation
 data, not causal or mechanistic proof, and often drawn from bulk tumor / transcriptomic datasets.
 PMC
- The functional roles of many non-canonical checkpoints in glioma remain incompletely understood.
 PMC
- Heterogeneity within tumors (both between patients and spatially within one tumor) complicates extrapolation and trial design. PMC+1
- The blood-brain barrier and CNS immune privilege pose special challenges for delivery of checkpoint inhibitors to gliomas. PMC+1
- The authors caution that targeting immune checkpoints carries risk of immune-related adverse events (as seen in other cancers) and that effects in the brain context may differ. PMC

[13 Oct 2025]