Bibliometric analysis autophagy

\$\text{\$\text{chatgpt.com}/c/68f1f894-f074-8327-af0b-0e4132973ebf}\$

Findings of: Yi L, Wang W, Chen Y, Xiong Z, Ma L, Wang Z, Ye W, Li X. A bibliometric analysis of global research trends in autophagy and glioblastomas. Naunyn Schmiedebergs Arch Pharmacol. 2025 Sep 17. doi: 10.1007/s00210-025-04578-x. PMID: 40960516.

Methods & dataset

- Retrieved literature from the Web of Science Core Collection (search cutoff 9 Sept 2024) and analyzed it with CiteSpace, VOSviewer, and Scimago Graphica. PubMed
- 1621 publications covering ~20 years were included. PubMed

Major bibliometric findings

- Geography / institutions: China and the United States lead in publication volume. PubMed
- Journals: International Journal of Molecular Sciences and Cancers were the most prolific journals in this topic area. PubMed
- Tools/authors (high-level): network/cluster analyses identified the main collaborative groups and citation clusters (visualized with the above tools). PubMed

Top thematic hotspots & trends

- Recent strong keyword/citation bursts included "Beclin-1", "epithelialmesenchymal transition (EMT)", "chloroquine", "unfolded protein response (UPR)", and "drug resistance" — indicating current focus on autophagy mechanisms, pharmacologic modulators, and resistance. PubMed
- The paper emphasizes two major thematic threads: (1) autophagy as a mechanism of GBM therapeutic resistance, and (2) the dual (context**dependent) role of autophagy** in glioblastoma biology — cytoprotective vs. cytotoxic effects. PubMed

Translational implications highlighted

Growing interest in combining autophagy regulators (e.g., chloroquine/hydroxychloroquine and related agents) with standard anti-GBM therapies to overcome resistance — but the authors note complexity because autophagy can be either pro- or anti-tumor depending on context. PubMed

Takeaway

The field is expanding (steady publication growth), led by China/USA; current and near-term research emphasis is on mechanistic studies of autophagy (Beclin-1, UPR, EMT), drug resistance, and pharmacologic modulation (chloroquine family) as adjuncts to therapy — with caution because autophagy's role is dual and context-dependent. PubMed

If you'd like, I can:

- pull the paper's figures/tables (if full text is available),
- list the top 10 most-cited papers the authors found, or
- extract the exact keyword-burst timeline and top contributing institutions/authors tell me which and I'll fetch it.

List the top 10 most-cited papers the authors found, in Vancouver form

I couldn't locate a direct list of the *top 10 most cited papers* from Yi et al. in the full text based on the sources I found. The paper's abstract and our accessible materials do **not** explicitly list the 10 most cited specific references.

However, I can give you several of the prominent, highly cited works in the autophagy + glioblastoma area that *are* discussed by Yi et al. / appear frequently in the field. If you want, I can try to access the full text or supplementary materials to pull together *exactly* the top-10 in Vancouver style. In the meantime, here are some key papers in Vancouver style:

Representative highly cited papers in autophagy & glioblastoma:

- 1. Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schönthal AH, Chen TC. *Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy.* Neurosurg Focus. 2014 Dec;37(6):E12. PubMed
- 2. Li X, Liu X, Sun Z, Liu Y, Cao L, Hou X, Yang Z, Zheng Z. *Impact of autophagy inhibition at different stages on cytotoxic effect of autophagy inducer in glioblastoma cells*. Cell Physiol Biochem. 2015;35(4):1303-16. PubMed
- 3. Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. (Author(s): name(s) missing in the snippet) *Journal/Year etc.* PubMed
- 4. Ye H, Chen M, Cao F, Huang H, Zhan R, Zheng X, et al. *Chloroquine, an autophagy inhibitor, potentiates the radiosensitivity of glioma initiating cells by inhibiting autophagy and activating apoptosis.* BMC Neurol. 2016;16:178. <u>BioMed Central</u>
- 5. Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway. Spandidos Publications, 2017; *Oncology Letters* or *Oncology Reports* etc. <u>spandidos-publications.com</u>

[17 oct 2025]