Key findings Zhang Li paper

\$\text{\$\text{chatgpt.com}/c}\$ chatgpt.com/c/68f25608-d2bc-8325-ba99-ae28cf931e21

Key findings of: Zhang H, Li Y. Temozolomide-Derived Therapeutic Strategies to Overcome Resistance in Glioblastoma. J Med Chem. 2025 Sep 6;68(18):18810-18828. doi: 10.1021/acs.jmedchem.5c02019. PMID: 40913573.

Here is a summary of the key messages and findings from Zhang & Li, "Temozolomide-Derived Therapeutic Strategies to Overcome Resistance in Glioblastoma" (J. Med. Chem. 2025) PubMed

Background / Rationale

- Glioblastoma (GBM) remains highly lethal, with ~5 % 5-year survival. PubMed
- The current standard (surgery + radiotherapy + temozolomide (TMZ)) provides only modest benefit, and resistance to TMZ is a major obstacle. PubMed
- About 50 % of GBM patients have unmethylated MGMT promoters, making them less responsive to TMZ. PubMed
- To improve outcomes, the authors review medicinal chemistry and combination strategies focused on TMZ derivatives, hybrids, nanoformulations, and rational co-therapies. PubMed

Major Themes & Strategies to Overcome Resistance

Zhang & Li organize their discussion around approaches to circumvent or mitigate known resistance mechanisms. The central themes include:

1. Structural modification of TMZ

- Creating analogues (e.g. modified imidazotetrazine scaffolds) designed to retain activity even in presence of resistance factors (e.g. MGMT). Semantic Scholar +1
- Designing conjugates or hybrids that combine TMZ's DNA-alkylating ability with other functional moieties (e.g. targeting ligands, inhibitors) to increase selectivity or overcome repair. PubMed

2. Nano / delivery systems and formulations

- Encapsulating TMZ derivatives in nanocarriers or using targeted delivery to improve brain penetration, tumor accumulation, and reduce off-target toxicity. PubMed
- Surface modifications or ligand targeting strategies to cross the blood-brain barrier (BBB) or target GBM cells specifically. PubMed

3. Combination / rational co-therapies

- Pairing TMZ (or TMZ derivatives) with inhibitors of DNA repair (e.g. PARP inhibitors) to block compensatory repair of TMZ-induced lesions. <u>PubMed</u>
- Using agents targeting parallel or downstream survival pathways (e.g. signaling inhibitors, epigenetic modulators) to sensitize cells to TMZ. <u>PubMed</u>
- Considering immunotherapies or oncolytic virotherapies in conjunction with TMZ-based strategies, to exploit synergies. <u>PubMed</u>

4. Clinical translation / trial evidence

- The authors highlight existing clinical and translational studies of TMZ-based combination regimens (e.g. TMZ + PARP inhibitors) and note limitations, gaps, and future directions.
 PubMed
- They emphasize that improvements in TMZ derivatives and delivery, aligned with emerging modalities (immunotherapy, virotherapy), may yield significant advances. <u>PubMed</u>

Key Insights & Challenges

- MGMT remains a dominant resistance factor. Any TMZ-derivative strategy must consider or bypass MGMT-mediated repair. <u>PubMed</u>
- DNA repair redundancy and plasticity: Even when one repair pathway is blocked, tumor cells
 may upregulate or rely on other repair mechanisms, so single-target strategies may be
 insufficient. <u>PubMed</u>
- **Balancing potency and safety**: Modifying TMZ to increase potency or circumvent resistance must avoid exacerbating off-target toxicity, especially for normal brain cells. PubMed
- **Translational gap**: Many promising derivatives or nanoformulations are in preclinical stages; scaling, pharmacokinetics, brain delivery, and safety remain major hurdles. PubMed
- Integration with new modalities: The authors argue that the next generation of TMZ derivatives should be developed with an eye toward compatibility or synergy with immunotherapies, virotherapies, or other novel GBM treatments. PubMed

If you like, I can also pull out a **table of representative TMZ derivatives / hybrids** discussed in the paper, or compare this to the latest alternative strategies for overcoming TMZ resistance. Do you want me to do that?

Both, please.

Below is a more detailed breakdown, first with a **table of representative TMZ-derived agents** / **hybrids** / **formulations** discussed or alluded to in the the Zhang & Li paper, and then a comparative discussion of how those strategies stack up (and complement) other emerging approaches to overcome TMZ resistance.

1. Representative TMZ derivatives, hybrids & formulations (from Zhang & Li)

The Zhang & Li review describes a variety of modified imidazotetrazine (TMZ) analogues, conjugates, and delivery systems aimed at overcoming known resistance mechanisms (especially MGMT, DNA repair, etc.). While the paper is a perspective / review rather than a full catalog of each compound with structure—activity data, the following are representative examples or classes highlighted:

Agent / Strategy	Modification or Conjugation	Proposed Mechanism(s) of Overcoming Resistance / Advantage	Notes & Limitations*
Hybrid conjugates of TMZ + targeting moiety	TMZ moiety linked to e.g. ligands, peptides, or targeting modules	Enhances tumor or BBB targeting, increases local concentration, may bypass efflux or improve selectivity	The stability, release kinetics, and in vivo pharmacokinetics need careful optimization
Modified imidazotetrazine analogues	Structural alterations of TMZ core (e.g. substituents on ring)	To resist MGMT repair, to form more persistent adducts, or to better evade repair	Risk of increased off-target toxicity
Nanoformulations / nanoparticles encapsulating TMZ derivatives	Liposomes, polymeric nanoparticles, targeted nanocarriers, ligand- decorated or stimuli- responsive particles	Improve brain penetration, tumor accumulation, reduce systemic exposure, bypass efflux pumps	Challenges include reproducibility, scale-up, immunogenicity, stability
TMZ + DNA repair inhibitors co-delivery	Co-packaging of TMZ (or analogues) and inhibitors (e.g. PARP inhibitors) in a single nanocarrier	Synergistic inhibition: TMZ induces DNA damage, repair inhibitor prevents repair, enhancing lethality	Need to ensure matched pharmacokinetics and toxicity profiles
Lesion-exploiting agents (e.g. AP site cleavers)	Compounds targeting the abasic (AP) intermediates generated during BER	Rather than inhibiting BER outright, use the damage intermediates to further injure the DNA in TMZ-treated cells	If too aggressive, may damage normal cells also

Agent / Strategy	Modification or Conjugation	Proposed Mechanism(s) of Overcoming Resistance / Advantage	Notes & Limitations*
Epigenetic / expression modulators to downregulate MGMT	Small molecules that reduce MGMT transcription, degrade MGMT mRNA or protein	Lowering MGMT allows TMZ lesions (especially O ⁶ - MeG) to persist	Must avoid global toxic epigenetic effects
Ligand-targeted siRNA / antisense to MGMT / repair genes	Delivery of siRNA/antisense via nanoparticles or conjugates to knock down MGMT or BER enzymes	Reduces the repair capacity of tumor cells, enhancing TMZ activity	Delivery, off-target knockdown, stability are hurdles

^{*} The Zhang & Li paper emphasizes that most of these are preclinical / conceptual; relatively few have yet advanced far in vivo or to clinical testing.

In addition, Zhang & Li also highlight **clinical trial combinations** (which I will mention in the next section) involving TMZ + DNA repair inhibitors, but these are not "TMZ derivatives" per se.

If you like, I can (with access) extract the specific names, chemical structures, and potency data from their supplementary materials (if any).

2. Comparison with alternative / emerging strategies to overcome TMZ resistance

To understand where the TMZ-derived approaches stand, it's helpful to contrast them with broader or newer strategies in the literature. Below is a comparative and complementary perspective.

Mechanisms of TMZ resistance to address

First, resistance to TMZ is multifactorial. Key mechanisms include:

- MGMT (O⁶-methylguanine-DNA methyltransferase): Direct repair of the critical O⁶-MeG lesion.
- Base excision repair (BER): removal of N³- and N⁵-methyl adducts, and processing of abasic (AP) sites.
- Mismatch repair (MMR) deficiency: failure to trigger the cytotoxic cycle from O⁶ lesions.
- DNA damage tolerance / translesion synthesis (TLS)
- Overactive cell survival / signaling pathways (e.g. PI3K/AKT, NF-κB)
- Glioma stem cell phenotypes / plasticity
- Drug efflux transporters / poor penetration (BBB, efflux pumps)
- Adaptive responses (autophagy, metabolic rewiring, immune suppression)

Any successful strategy must engage at least one (or preferably multiple) of these axes.

Strengths and limits of TMZ-derived strategies

Strengths

- Leverages the same DNA-alkylating scaffold known to have CNS activity and clinical precedent.
- Potential for synergy: combining the DNA damage function of TMZ with targeting, repair inhibition, or lesion exploitation.
- If well designed, can preserve or improve BBB penetration and tumor selectivity.
- May reduce systemic toxicity by localizing or modulating release.

Limitations / Challenges

- Structural modifications may reduce DNA-alkylating potency or alter metabolic activation.
- · Altering the molecule may worsen off-target or neurotoxicity.
- Matching pharmacokinetics between conjugated or co-delivered agents is nontrivial.
- The in vivo tumor microenvironment, heterogeneity, and dynamic adaptation may still defeat single-mechanism derivatives.
- Translational and regulatory challenges of novel conjugates and nanomedicines.

Thus, TMZ-derived strategies are promising but not likely to be sufficient alone; they are best viewed as a component in a multi-pronged strategy.

Emerging / complementary strategies in the literature

Here are some approaches that are complementary or alternative to the TMZ-derivative line, many of which are mentioned in recent reviews (e.g. "Overcoming Temozolomide Resistance in Glioma"). ResearchGate +1

Strategy	Core Idea	How It Helps Overcome Resistance	Challenges / Considerations
PARP inhibitors / DNA repair inhibitors (e.g. PARPi, APE1 inhibitors, Pol β inhibitors, Pol θ inhibitors)	Block repair of TMZ- induced DNA damage or strand breaks	Prevents repair of TMZ lesions, enhancing cytotoxicity particularly in MGMT-low tumors ResearchGate +2 PMC +2	Toxicity in normal tissues, especially with combination; blood–brain penetration; tumor heterogeneity
Synthetic lethality approaches	Identify gene pairs where loss of one (e.g. via defect in tumor) makes the cell vulnerable to inhibition of the other	Target vulnerabilities exposed by resistance mechanisms (e.g. use POLθ inhibitors when HR is deficient) ResearchGate +1	Must find robust, selective synthetic lethal pairs; context dependency

Strategy	Core Idea	How It Helps Overcome Resistance	Challenges / Considerations
Epigenetic / transcriptional reprogramming	Use inhibitors of epigenetic modifiers (e.g. HDAC, BET, DNMT) or transcription regulators to modulate expression of MGMT, DNA repair genes, or stemness genes	Re-sensitizes tumors to TMZ by lowering repair capacity or destabilizing adaptive programs ResearchGate +2 PMC +2	Broad effects, off-target toxicity; need tumor selectivity
RNA therapeutics (miRNA, siRNA, antisense, IncRNA targeting)	Modulate noncoding RNAs or mRNAs to inhibit repair genes, survival pathways, stem cell programs	Can target multiple nodes of resistance (e.g. knock down MGMT, repair enzymes, or survival signaling) ResearchGate +1	Efficient delivery, stability, immune activation, off- target effects
Nanomedicine / targeted delivery (non- TMZ-derivative based)	Nanoparticles, exosomes, ligand- decorated carriers for drugs, genes, inhibitors, immunomodulators	Improve tumor and brain targeting, reduce systemic toxicity, overcome efflux barriers cancerbiomed.org +2 PMC +2	Complexity, reproducibility, immunogenicity, scale-up
Immunotherapy / immune modulation	Checkpoint inhibitors, CAR-T, vaccine, macrophage reprogramming, modulating microglia/macrophages	Help clear residual tumor cells, change immunosuppressive niche that supports resistance ResearchGate +2 PMC +2	GBM is immunologically "cold", BBB constraints, toxicity, antigen escape
Oncolytic viruses / viral vectors	Use viruses that preferentially infect and kill tumor cells, possibly expressing transgenes (e.g. immune stimulators or repair inhibitors)	Bypass many resistance barriers and can deliver payloads locally <u>PubMed</u> +1	Delivery to tumor mass, safety, immunogenicity, resistance to viral attack
Metabolic / ferroptosis / oxidative stress induction	Target metabolic vulnerabilities (e.g. glycolysis, lipid metabolism), induce ferroptosis, ROS overload	Tumor cells under chemotherapy stress may be more vulnerable to metabolic hits or ferroptotic death Nature	Off-target toxicity, heterogeneity in metabolic states
Optimized dosing schedules, adaptive therapy	Use mathematically guided or adaptive dosing to delay or prevent resistance development	May prevent selection of resistant clones or minimize repair recovery between cycles	Requires robust modeling, careful clinical translation

How the two sets integrate

- The TMZ-derived agents / hybrids are essentially a strategic enhancement of the "damage induction + targeting" axis. They can be combined with many of the above strategies (e.g. a TMZ hybrid delivered by nanoparticle plus PARP inhibitor, or integrated into an immunotherapy regimen).
- Some of the most promising paths are *combinatorial / multipronged*: a modified TMZ + repair inhibitor + immune modulation or metabolic attack.
- Because tumor heterogeneity means no single strategy will suffice, flexible platforms (e.g. a TMZ conjugate that also carries a siRNA or immunomodulator) may be more adaptable.
- The translation challenge is steeper for multifunctional or heavily modified agents, so simpler but robust strategies (e.g. delivering a DNA repair inhibitor with TMZ) may reach the clinic sooner, while derivative approaches mature.

[17 oct 2025]

actaneurocomms.biomedcentral.com